
POWER DATA BOOK

464 Ellis Street, Mountain View, California 94042

INTRODUCTION

You, the customer, and your needs have dictated the format and contents of this Power Handbook. To be responsive to the changing requirements of the power market, Fairchild will commit resources to maintain a leading position in technology, quality, commitment to delivery schedule and service to customers.

Fairchild has long been a major supplier of bipolar power transistors. However, the thousands of EIA registered and house-numbered devices makes it impossible to second source or even cross reference all of the industry devices. This book contains popular industry preferred numbers. If a device you are using or intend to use is not contained in this handbook, please contact the factory through your local sales office or representative for Fairchild information on your requirement. The Company's broad technology base enables the manufacturing of devices to most industry numbers.

This book has been sectioned for your convenience—quick reference charts, technical information and complete data sheets—and organized as follows:

Selection Guides

Quick reference guides for designers seeking devices to meet their needs. These selection guides are arranged in several ways to make location of information easy. They also contain basic parameter information for each device plus the page number where the complete data sheet can be located.

Industry Cross Reference

Industry type number vs Fairchild's nearest equivalent, an aid to locating replacement parts for old designs.

Chapters 1 through 5

Technical information to aid the designer in selecting the correct device for his application—Technology, Safe Operating Area, Manufacturing, Packaging and Heat Sinking, and Reliability.

Product Information

Fairchild devices arranged numerically and containing electrical characteristics, SOA and electrical characteristic curves on each device. Information on processing and ordering of Fairchild power dice.

Standard Definitions of Symbols and Terms used in Specifying Power Devices

Addresses of Fairchild Sales Offices, Representatives and Distributors

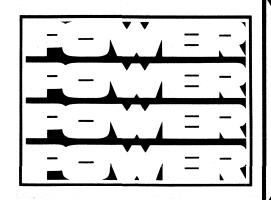
As well as supplying a full line of standard devices, Fairchild has the capability of supplying custom devices tailored to your application. A complete service organization is available to assist you—a sales force consisting of sales engineers, representatives and distributors, field application engineers to help you with circuit design or device application, and customer service coordinators to resolve and expedite your order. Our goal is to give you cost-effective power transistors, timely delivery and excellent service while maintaining a top position in this field of expanding technology.

TABLE OF CONTENTS

NUMERICAL INDEX OF DEVICESiv
DEVICE SELECTION GUIDES AND CROSS REFERENCE Device Selection Guide
Arranged by Polarity and Ascending VCEO Selection Guide by Package
Arranged by I _{C(max)} , Polarity and V _{CEO} Darlington Selection Guide
Industry Cross Reference XIX
CHAPTER 1 POWER TRANSISTOR TECHNOLOGY Structures 1-3 Geometries 1-5 Design Considerations 1-6
CHAPTER 2 SAFE OPERATING AREADC Forward-Biased Safe Operating Area2-3Pulsed SOA2-6Testing of Forward Biased SOA2-9Reverse-Biased Safe Operating Area2-10
CHAPTER 3 POWER TRANSISTOR MANUFACTURING
CHAPTER 4 POWER TRANSISTOR PACKAGING AND HEAT SINKING Thermal Resistance
CHAPTER 5 POWER TRANSISTOR RELIABILITY Areas of Consideration 5-3 Wafer Manufacture 5-4 Failure Analysis 5-6 Reliability Monitor and Control 5-8 JAN Power Devices 5-13
PRODUCT INFORMATION Power Transistors 6-3 Unencapsulated Chips 6-273 Order Information 6-274
DEFINITIONS OF SYMBOLS AND TERMS
FRANCHISED DISTRIBUTORS 8-3
SALES REPRESENTATIVES 8-6
FIELD SALES OFFICES 8-7

NUMERICAL INDEX OF DEVICES

Device	Туре	Data Sheet Page No.	Device	Туре	Data Sheet Page No.
2N3054	Power Transistor	6-3	2N4915	Power Transistor	6-57
2N3055	u .	6-6	2N5038	<i>n</i> .	6-60
2N3055SD	n ·	6-8	2N5039	<i>"</i>	6-60
2N3439	<i>n</i> - 1	6-10	2N5058	<i>"</i>	6-63
2N3440	"	6-10	2N5059	10	6-63
2N3713	"	6-13	2N5067	$m{n}$	6-66
2N3714		6-13	2N5068	n	6-66
2N3715		6-13	2N5069		6-66
2N3716	"	6-13	2N5301	<i>"</i>	6-69
2N3740	<i>n</i>	6-16	2N5302	<i>u</i>	6-69
2N3741	" "	6-16	2N5303	и и	6-69
2N3766	"	6-19	2N5320		6-72
2N3767		6-19	2N5321	<i>"</i>	6-72
2N3771		6-22	2N5322	"	6-75
2N3772		6-22	2N5323		6-75
2N3789		6-25	2N5334	<i>n</i>	6-78
2N3790	· <i>n</i>	6-25	2N5335	"	6-78
2N3791	"	6-25	2N5336	"	6-81
2N3792	"	6-25	2N5337	"	6-81
2N4231	"	6-28	2N5338	<i>"</i>	6-84
2N4232	"	6-28	2N5339	"	6-84
2N4233	"	6-28	2N5415	<i>n</i>	6-87
2N4234	"	6-31	2N5416	<i>"</i>	6-87
2N4235	"	6-31	2N5629	"	6-90
2N4236	"	6-31	2N5630	n .	6-90
2N4237	"	6-34	2N5631	<i>"</i>	6-90
2N4238	"	6-34	2N5679	ń	6-92
2N4239	"	6-34	2N5680	"	6-92
2N4398	* "	6-37	2N5681	4	6-95
2N4399	"	6-37	2N5682	<i>u</i>	6-95
2N4895	"	6-40	2N5683	"	6-98
2N4896	"	6-40	2N5684	"	6-98
2N4897	. <i>u</i>	6-40	2N5685	• • • • • • • • • • • • • • • • • • •	6-101
2N4898	"	6-43	2N5686	$\frac{u}{u}$	6-101
2N4899	<i>"</i>	6-43	2N5838		6-105
2N4900	"	6-43	2N5839	<i>"</i>	6-105
N4901	"	6-46	2N5840	<i>H</i>	6-105
2N4902	<i>"</i>	6-46	2N5871		6-108
2N4903	"	6-46	2N5872		6-108
N4904	<i>''</i>	6-49	2N5873	n	6-111
2N4905	"	6-49	2N5874	Power Transistor	6-111
N4906	"	6-49	2N5875		6-114
N4907	"	6-52	2N5876	<i>"</i>	6-114
2N4908	"	6-52	2N5877	<i>"</i>	6-117
2N4909	n .	6-52	2N5878 2N5879	, , , , , , , , , , , , , , , , , , ,	6-117 6-120
2N4910	и .	6-54	2N5880		6-120
2N4911	,,	6-54	2N5880 2N5881	<i>"</i>	
2N4912	<i>n</i> .	6-54 6-54	2N5882	"	6-123
N4912 N4913	n	6-57	2N5883	<i>n</i>	6-123
2N4914	<i>n</i>	6-57	2N5883 2N5884	, , , , , , , , , , , , , , , , , , , ,	6-126
-INTO 17		0-5/	ZIND004		6-126


NUMERICAL INDEX OF DEVICES (Cont'd)

Device	Type	Data Sheet Page No.	Device	Туре	Data Sheet Page No.
2N5885	Power Transistor	6-129	2N6489	Power Transistor	6-182
2N5886	<i>u</i>	6-129	2N6490	"	6-182
2N6029		6-132	2N6491	"	6-182
2N6030	<i>"</i>	6-132	2N6569	. "	6-184
2N6031	"	6-132	2N6576	Power Darlington	6-186
2N6050	Power Darlington	6-134	2140070	1 ower Burnington	0.100
2N6051	"	6-134	2N6577	n	6-186
2N6052	<i>"</i>	6-134	BC323	Power Transistor	6-189
2N6053	"	6-137	BD220	"	6-191
2N6054	"	6-137	BD221	"	6-191
2N6055	"	6-140	BD222	"	6-191
2N6056	"	6-140	DDZZZ		0-151
2110030		0-140	BD223	"	6-194
2N6057	"	6-143	BD224	"	6-194
2N6058	"	6-143	BD225		6-194
2N6059	. "	6-143	BFX34	. "	6-197
2N6121	Power Transistor	6-146	BF257	. "	6-200
2N6122	<i>"</i>	6-146		,,	
			BF258	"	6-200
2N6123	<i>"</i>	6-146	BF259		6-200
2N6124	<i>"</i>	6-149	BF336	"	6-202
2N6125	·n	6-149	BF337	n	6-202
2N6126	"	6-149	BF338	"	6-202
2N6129	<i>"</i>	6-152	FT47	,,	6-204
2N6130	ii .	6-152		"	
2N6130 2N6131	"		FT48		6-204
	"	6-152	FT49	"	6-204
2N6132	"	6-155	FT50	,,	6-204
2N6133	,,	6-155	FT317	"	6-206
2N6134		6-155	FT317A	n	6-206
2N6249	<i>n</i>	6-158	FT317B	"	6-206
2N6250	"	6-158	FT359	"	6-208
2N6251	"	6-158	FT401	"	6-210
2N6282	Power Darlington	6-161	FT402	n ·	6-210
2N6283	"	6-161	11402		0-210
2N6284	<i>n</i>	6-161	FT410	Power Transistor	6-212
2N6285	"	6-164	FT411	"	6-212
2N6286	"	6-164	FT413	<i>n</i> :	6-214
2N6287	"	6-164	FT417	. "	6-216
2N6306	Power Transistor	6-167	FT417A	n.	6-216
2N6307M	Power Transistor	6-167	FT417B	"	6-216
2N6308M	<i>"</i>	6-167	FT423	"	6-214
2N6383	Power Darlington	6-170	FT430	"	6-218
2N6384	"	6-170	FT431	n .	6-218
2N6385	"	6-170	FT2955	"	6-220
2N6386	"	6-173	FT3055	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6-222
2N6387	<i>"</i>	6-173	MJ802	<i>n</i>	6-224
2N6388	<i>"</i>		MJ4502	· "	
2N6473	Davier Trensister	6-173		"	6-226
2N6473 2N6474	Power Transistor	6-176	MJE3055F		6-228
		6-176	MRF8004	Power RF Transistor	6-230
2N6475		6-178	SE7055	Power Transistor	6-232
2N6476	"	6-178	SE7056		6-232
2N6486		6-180	SE9300	Power Darlington	6-235
2N6487	, "	6-180	SE9301	"	6-235
2N6488	"	6-180	SE9302	<i>II</i>	6-235

NUMERICAL INDEX OF DEVICES (Cont'd)

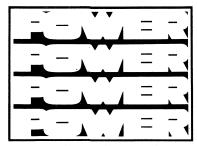
Device*	Туре	Data Sheet Page No.	Device	Туре	Data Sheet Page No.
SE9303	Power Transistor	6-237	TIP42	Power Transistor	6-259
SE9304	n .	6-237	TIP42A	<i>"</i>	6-259
SE9305	,,	6-237	TIP42B	"	6-259
SE9331	. 17	6-239	TIP42C		6-259
SE9400	Power Darlington	6-241	TIP61		6-261
SE9401	<i>n</i>	6-241	TIP61A	<i>n</i>	6-261
SE9402	n .	6-241	TIP61B	"	6-261
SE9403	"	6-243	TIP61C	<i>n</i>	6-261
SE9404	n i	6-243	TIP62	"	6-263
SE9405	all section is a second of the Arthur Maria and the second of the second	6-243	TIP62A	and the second of the second o	6-263
TIP29	Power Transistor	6-245	TIP62B	n	6-263
TIP29A		6-245	TIP62C	<i>n</i>	6-263
TIP29B	u .	6-245	TIP110	Power Darlington	6-265
TIP29C	· • • • • • • • • • • • • • • • • • • •	6-245	TIP111	"	6-265
TIP30	<i>"</i>	6-248	TIP112	<i>"</i>	6-265
TIP30A	<i>n</i>	6-248	TIP115	<i>n</i>	6-267
TIP30B	"	6-248	TIP116	, , , , , , , , , , , , , , , , , , ,	6-267
TIP30C		6-248	TIP117	"	6-267
TIP31	<i>n</i> .	6-251	TIP120	"	6-269
TIP31A	"	6-251	TIP121	<i>n</i> .	6-269
TIP31B	n	6-251	TIP122	"	6-269
TIP31C	· <i>n</i> ·	6-251	TIP125	"	6-271
TIP32	"	6-254	TIP126	"	6-271
TIP32A	"	6-254	TIP127	· <i>n</i>	6-271
TIP32B	"	6-254			
TIP32C	n .	6-254			
TIP41	<i>"</i>	6-257			
TIP41A	<i>n</i>	6-257			
TIP41B	"	6-257			
TIP41C	"	6-257			*

DEVICE SELECTION GUIDES AND CROSS REFERENCE

POWER TRANSISTOR TECHNOLOGY

SAFE OPERATING AREA

POWER TRANSISTOR MANUFACTURING


POWER TRANSISTOR PACKAGING AND HEAT SINKING

POWER TRANSISTOR RELIABILITY

PRODUCT INFORMATION

DEFINITIONS OF SYMBOLS AND TERMS

FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS

DEVICE SELECTION GUIDES AND CROSS REFERENCE

- Device Selection Guide Arranged by Device
- Selection Guide by IC(max)
- Arranged by Polarity and Ascending VCEO

 Selection Guide by Package
- Arranged by I_{C(max)}, Polarity and V_{CEO}

 Darlington Selection Guide
- Arranged by I_{C(max)}, Polarity and V_{CEO}

 Industry Cross Reference

POLAF 2N3054	OUTV .		Max	Min/Max	രിക	Max	@ lc	Min	T _C =25°C	PACK-	SHEET
2N3054	1111	Max A	v		A	٧	⊕ .C A	MHz	w w	AGE	PAGE NO
	NPN	4.0	55	25/150	0.5	1.0	0.5	-	25	TO-66	6-3
2N3055	NPN	15	60	20/70	4.0	1.1	4.0	-	117	TO-3	6-6
2N3055SD	NPN	15	60	20/70	4.0	1.1	4.0	0.8	115	TO-3	6-8
2N3439	NPN	1.0	350	40/160	0.02	0.5	0.05	15	10	TO-39	6-10
2N3440	NPN	1.0	250	40/160	0.02	0.5	0.05	15	10	TO-39	6-10
2N3713	NPN	10	60	25/75	1.0	1.0	5.0	4.0	150	TO-3	6-13
2N3714	NPN	10	80	25/75	1.0	1.0	5.0	4.0	150	TO-3	6-13
2N3715	NPN	10	60	50/150	1.0	0.8	5.0	4.0	150	TO-3	6-13
2N3716	NPN	10	80	50/150	1.0	0.8	5.0	2.5	150	TO-3	6-13
2N3740	PNP	1.0	60	30/100	0.25	0.6	1.0	4.0	25	TO-66	6-16
2N3741	PNP	1.0	80	30/100	0.25	0.6	1.0	4.0	25	TO-66	6-16
2N3766	NPN	3.0	60	40/160	0.5	1.0	0.5	10	20	TO-66	6-19
2N3767	NPN	3.0	80	40/160	0.5	1.0	0.5	10	20	TO-66	6-19
2N3771	NPN	30	40	15/60	15	2.0	15	0.2	150	TO-3	6-22
2N3772	NPN	20	60	15/60	10	1.4	10	0.2	150	TO-3	6-22
2N3789	PNP	10	60	25/90	1.0	1.0	5.0	4.0	150	TO-3	6-25
2N3790	PNP	10	80	25/90	1.0	1.0	5.0	4.0	150	TO-3	6-25
2N3791	PNP	10	60	50/180	1.0	1.0	5.0	4.0	150	TO-3	6-25
2N3792	PNP	10	80	50/180	1.0	1.0	5.0	4.0	150	TO-3	6-25
2N4231	NPN	4.0	40	25/100	1.5	0.7	1.5	4.0	35	TO-66	6-28
2N4232	NPN	4.0	60	25/100	1.5	0.7	1.5	4.0	35	TO-66	6-28
2N4233	NPN	4.0	80	25/100	1.5	0.7	1.5	4.0	35	TO-66	6-28
2N4234	PNP	3.0	40	30/150	0.25	0.6	1.0	3.0	6.0	TO-39	6-31
2N4235	PNP	3.0	60	30/150	0.25	0.6	1.0	3.0	6.0	TO-39	6-31
2N4236	PNP	3.0	80	30/150	0.25	0.6	1.0	3.0	6.0	TO-39	6-31
2N4237	NPN	4.0	40	30/150	0.25	0.6	1.0	1.0	6.0	TO-39	6-34
2N4238	NPN	4.0	60	30/150	0.25	0.6	1.0	1.0	6.0	TO-39	6-34
2N4239	NPN	4.0	80	30/150	0.25	0.6	1.0	1.0	6.0	TO-39	6-34
2N4398	PNP	30	40	15/60	15	1.0	15	4.0	200	TO-3	6-37
2N4399	PNP	30	60	15/60	15	1.0	15	4.0	200	TO-3	6-37
2N4895	NPN	5.0	60	40/120	2.0	1.0	5.0	50	7.0	TO-39	6-40
2N4896	NPN	5.0	60	100/300	2.0	1.0	5.0	80	7.0	TO-39	6-40
2N4897	NPN	5.0	80	40/120	2.0	1.0	5.0	50	7.0	TO-39	6-40
2N4898	PNP	1.0	40	20/100	0.5	0.6	1.0	3.0	25	TO-66	6-43
2N4899	PNP	1.0	60	20/100	0.5	0.6	1.0	3.0	25	TO-66	6-43
2N4900	PNP	1.0	80	20/100	0.5	0.6	1.0	3.0	25	TO-66	6-43
2N4901	PNP	5.0	40	20/80	1.0	1.5	5.0	4.0	87.5	TO-3	6-46
2N4902	PNP	5.0	60	20/80	1.0	1.5	5.0	4.0	87.5	TO-3	6-46
2N4903	PNP	5.0	80	20/80	1.0	1.5	5.0	4.0	87.5	TO-3	6-46
2N49O4	PNP	5.0	40	25/100	2.5	1.5	5.0	4.0	87.5	TO-3	6-49
2N4905	PNP	5.0	60	25/100	2.5	1.5	5.0	4.0	87.5	TO-3	6-49
2N4906	PNP	5.0	80	25/100	2.5	1.5	5.0	4.0	87.5	TO-3	6-49
2N4907	PNP	10	40	20/80	4.0	0.75	4.0	4.0	150	TO-3	6-52
2N4908	PNP	10	60	20/80	4.0	0.75	4.0	4.0	150	TO-3	6-52
2N4909	PNP	10	80	20/80	4.0	2.0	10	4.0	150	TO-3	6-52
2N4910	NPN	1.0	40	20/100	0.5	0.6	1.0	4.0	25	TO-66	6-54
2N4911	NPN	1.0	60	20/100	0.5	0.6	1.0	4.0	25	TO-66	6-54
2N4912	NPN	1.0	80	20/100	0.5	0.6	1.0	4.0	25	TO-66	6-54
2N4913	NPN	5.0	40	25/100	2.5	1.5	5.0	4.0	87.5	TO-3	6-57
2N4914	NPN	5.0	60	25/100	2.5	1.5	5.0	4.0	87.5	TO-3	6-57

DEV POLA		I _C Max	V _{CEO} Max V	h _{Ft} Min/Ma		V _{CI} Max V	E(sat) @ IC A	f _T Min MHz	P _{D(Max)} T _C =25°C W	PACK- AGE	DATA SHEET PAGE NO
2N4915	NPN	5.0	80	25/100	2.5	1.5	5.0	4.0	87.5	TO-3	6-57
2N5038	NPN	20	90	20/100	12	1.0	12	60	140	TO-3	6-60
2N5039	NPN	20	75	20/100	10	1.0	10	60	140	TO-3	6-60
2N5058	NPN	0.15	300	35/150	.03	1.0	.03	30	1.0	TO-39	6-63
2N5059	NPN	0.15	250	30/150	.03	1.0	.03	30	1.0	TO-39	6-63
2N5067	NPN	5.0	40	20/80	1.0	0.4	1.0	4.0	87.5	TO-3	6-66
2N5068	NPN	5.0	60	20/80	1.0	0.4	1.0	4.0	87.5	TO-3	6-66
2N5069	NPN	5.0	80	20/80	1.0	0.4	1.0	4.0	87.5	TO-3	6-66
2N5301	NPN	30	40	15/60	15	2.0	20	2.0	200	TO-3	6-69
2N5302	NPN	30	60	15/60	15	2.0	20	2.0	200	TO-3	6-69
2N5303	NPN	20	80	15/60	10	2.0	20	2.0	200	TO-3	6-69
2N5320	NPN	2.0	75	30/130	0.5	0.5	0.5	50	10	TO-39	6-72
2N5320 2N5321	NPN	2.0	50	40/250	0.5	0.8	0.5	50	10	TO-39	6-72
2N5321 2N5322	PNP	2.0	75	30/130	0.5	0.5	0.5	50	10	TO-39	6-75
2N5322 2N5323	PNP	2.0	50	40/250	0.5	0.5	0.5	50	10	TO-39	6-75
21/5224	NIDNI	20	60	20/150	1.0		2.0	40	60	TO 20	0.70
2N5334	NPN	3.0		30/150	1.0	0.7	2.0	40	6.0	TO-39	6-78
2N5335	NPN	3.0	80	30/150	1.0	0.7	2.0	40	6.0	TO-39	6-78
2N5336	NPN	5.0	80	30/120	2.0	0.7	2.0	30	6.0	TO-39	6-81
2N5337 2N5338	NPN NPN	5.0 5.0	100	60/240 30/120	2.0 2.0	0.7 0.7	2.0 2.0	30 30	6.0 6.0	TO-39 TO-39	6-81 6-84
2N5339	NPN	5.0	100	60/240	2.0	0.7	2.0	30	6.0	TO-39	6-84
2N5415	PNP	1.0	200	30/150	0.05	2.5	0.05	15	10	TO-39	6-87
2N5416	PNP	1.0	300	30/120	0.05	2.0	0.05	15	10	TO-39	6-87
2N5629	NPN	16	100	25/100	8.0	1.0	10	0.5	200	TO-3	6-90
2N5630	NPN	16	120	20/80	8.0	1.0	10	0.5	200	TO-3	6-90
2N5631	NPN	16	140	15/60	8.0	1.0	10	0.5	200	TO-3	6-90
2N5679	PNP	1.0	100	40/150	0.25	1.0	0.5	30	10	TO-39	6-92
2N5680	PNP	1.0	120	40/150	0.25	1.0	0.5	30	10	TO-39	6-92
2N5681	NPN	1.0	100	40/150	0.25	1.0	0.5	30	10	TO-39	6-95
2N5682	NPN	1.0	120	40/150	0.25	1.0	0.5	30	10	TO-39	6-95
2N5683	PNP	50	60	15/60	25	1.0	25	2.0	300	TO-3	6-98
2N5684	PNP	50	80	15/60	25	1.0	25	2.0	300	TO-3	6-98
2N5685	NPN	50	60	15/60	25	1.0	25	2.0	300	TO-3	6-101
2N5686	NPN	50	80	15/60	25	1.0	25	2.0	300	TO-3	6-101
2N5838	NPN	3.0	250	8/40	3.0	1.0	3.0	5.0	100	TO-3	6-105
2N5839	NPN	3.0	275	10/50	2.0	1.5	2.0	5.0	100	TO-3	6-105
2N5840	NPN	3.0	350	10/50	2.0	1.5	2.0	5.0	100	TO-3	6-105
2N5871	PNP	7.0	60	20/100	2.5	1.0	4.0	4.0	115	TO-3	6-108
2N5872	PNP	7.0	80	20/100	2.5	1.0	4.0	4.0	115	TO-3	6-108
2N5873	NPN	7.0	60	20/100	2.5	1.0	4.0	4.0	115	TO-3	6-111
2N5874	NPN	7.0	80	20/100	2.5	1.0	4.0	4.0	115	TO-3	6-111
2N5875	PNP	8.0	60	20/100	4.0	1.0	5.0	4.0	150	TO-3	6-114
2N5876	PNP	8.0	80	20/100	4.0	1.0	5.0	4.0	150	TO-3	6-114
2N5877	NPN	8.0	60	20/100	4.0	1.0	5.0	4.0	150	TO-3	6-117
2N5878	NPN	8.0	80	20/100	4.0	1.0	5.0	4.0	150	TO-3	6-117
2N5879	PNP	12	60	20/100	6.0	1.0	7.0	4.0	160	TO-3	6-120
2N5880	PNP	12	80	20/100	6.0	1.0	7.0	4.0	160	TO-3	6-120
2N5881	NPN	12	60	20/100	6.0	1.0	7.0	4.0	160	TO-3	6-123
2N5882	NPN	12	80	20/100	6.0	1.0	7.0	4.0	160	TO-3	6-123
	PNP	20	60	20/100	10	1.0	15	4.0	200	TO-3	6-126
2N5883			,	,				,	,		

DE	VICE	I _C	V _{CEO} Max	h _{FE} Min/Max	രിട		(sat)	f _T Min	PD(Max)	PACK-	DATA
POL	ARITY	Α	v		A	v	A	MHz	w	AGE	PAGE NO
2N5884	PNP	20	80	20/100	10	1.0	15	4.0	200	TO-3	6-126
2N5885	NPN	20	60	20/100	10	1.0	15	4.0	200	TO-3	6-129
2N5886	NPN	20	80	20/100	10	1.0	15	4.0	200	TO-3	6-129
2N6029	PNP	16	100	25/100	8.0	2.0	16	1.0	200	TO-3	6-132
2N6030	PNP	16	120	20/80	8.0	2.0	16	1.0	200	TO-3	6-132
2N6031	PNP	16	140	15/60	8.0	2.0	16	1.0	200	TO-3	6-132
2N6050	PNP	12	60	750/18K	6.0	2.0	6.0	4.0	150	TO-3	6-134
2N6051	PNP	12	80	750/18K	6.0	2.0	6.0	4.0	150	TO-3	6-134
2N6052	PNP	12	100	750/18K	6.0	2.0	6.0	4.0	150	TO-3	6-134
2N6053	PNP	8.0	60	750/18K	4.0	2.0	4.0	4.0	100	TO-3	6-137
2N6054	PNP	8.0	80	750/18K	4.0	2.0	4.0	4.0	100	TO-3	6-137
2N6055	NPN	8.0	60	750/18K	4.0	2.0	4.0	4.0	100	TO-3	6-140
2N6056	NPN	8.0	80	750/18K	4.0	2.0	4.0	4.0	100	TO-3	6-140
2N6057	NPN	12	60	750/18K	6.0	2.0	6.0	4.0	150	TO-3	6-143
2N6058	NPN	12	80	750/18K	6.0	2.0	6.0	4.0	150	TO-3	6-143
2N6059	NPN	12	100	750/18K	6.0	2.0	6.0	4.0	150	то-з	6-143
2N6121	NPN	4.0	45	25/100	1.5	0.6	1.5	2.5	40	TO-220	6-146
2N6122	NPN	4.0	60	25/100	1.5	0.6	1.5	2.5	40	TO-220	6-146
2N6123	NPN	4.0	80	20/80	1.5	0.6	1.5	2.5	40	TO-220	6-146
2N6124	PNP	4.0	45	25/100	1.5	0.6	1.5	2.5	40	TO-220	6-149
2N6125	PNP	4.0	60	25/100	1.5	0.6	1.5	2.5	40	TO-220	6-149
2N6126	PNP	4.0	80	20/80	1.5	0.6	1.5	2.5	40	TO-220	
2N6129	NPN	7.0	40	20/100	2.5	1.4	7.0	2.5		TO-220	6-149
2N6130	NPN	7.0	60	20/100	2.5	1.4	7.0	2.5	50	1	6-152
2N6131	NPN	7.0	80	20/100	2.5	2.0	7.0	2.5	50 50	TO-220 TO-220	6-152 6-152
2N6132	PNP	7.0	40	20/100	2.5	1.4	7.0	2.5	50	TO-220	6-155
2N6133	PNP	7.0	60	20/100	2.5	1.4	7.0	2.5	50		
2N6134	PNP	7.0	80	20/100	2.5	2.0	7.0	2.5	50	TO-220	6-155
2N6249	NPN	10	200	10/50	10	1.5	10	2.5	100	TO-220	6-155
2N6250	NPN	10	275	8/50	10	1.5	10	2.5	100	TO-3	6-158
2N6251	NPN	10	350	6/50	10	1.5	10	2.5	100	TO-3 TO-3	6-158 6-158
2N6282	NPN	20	60	750/18K	10	2.0	10	4.0	160		
2N6283	NPN	20	80	750/18K	10	2.0	10	4.0	160	TO-3	6-161
2N6284	NPN	20	100	750/18K	10	2.0	10	4.0	160	TO-3	6-161
2N6285	PNP	20	60	750/18K	10	2.0	10	4.0	160	TO-3	6-161
2N6286	PNP	20	80	750/18K	10	2.0	10	4.0	160	TO-3 TO-3	6-164 6-164
2N6287	PNP	20	100	750/18K	10	2.0	10	4.0	160		
2N6306	NPN	8.0	250	15/75	3.0	0.8	3.0	5.0	160	TO-3	6-164
2N6307M	NPN	8.0	300	15/75	3.0	1.0	3.0	5.0	125 125	TO-3	6-167
2N6308M	NPN	8.0	350	12/60	3.0	1.5	3.0	5.0	125	TO-3	6-167
2N6383	NPN	10	40	1K/20K	5.0	2.0	5.0 5.0	20	100	TO-3	6-167
			40	TR/ ZOR		2.0	3.0		100	TO-3	6-170
2N6384 2N6385	NPN NPN	10	60	1K/20K 1K/20K	5.0	2.0	5.0	20	100	TO-3	6-170
2N6386	NPN	10	80 40	1K/20K	5.0	2.0	5.0	20	100	TO-3	6-170
2N6387	NPN	10	ı	1K/20K	3.0	2.0	3.0	20	40	TO-220	6-173
2N6388	NPN	10	60 80	1K/20K	3.0 3.0	2.0	3.0 3.0	20 20	40 40	TO-220 TO-220	6-173 6-173
2N6473	NPN	4.0	100	15/150	1.5	1.2	1.5	10	40	TO-220	6-176
2N6474	NPN	4.0	120	15/150	1.5	1.2	1.5	10	40	TO-220	6-176
2N6475	PNP	4.0	100	15/150	1.5	1.2	1.5	10	40	TO-220	6-178
2N6476	PNP	4.0	120	15/150	1.5	1.2	1.5	10	40	TO-220	6-178
2N6486	NPN	15	40	20/150	5.0	1.3	5.0	5.0	75	TO-220	6-180

DEV POLA		I _C Max	V _{CEO} Max	h _{FE} Min/Max		V _{CE} Max V	(sat) @ ^I C A	f _T Min MHz	P _{D(Max)} T _C =25°C W	PACK- AGE	DATA SHEET PAGE NO
2N6487 2N6488 2N6489 2N6490 2N6491	NPN NPN PNP PNP PNP	15 15 15 15 15	60 80 40 60 80	20/150 20/150 20/150 20/150 20/150	5.0 5.0 5.0 5.0 5.0	1.3 1.3 1.3 1.3 1.3	5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 5.0	75 75 75 75 75	TO-220 TO-220 TO-220 TO-220 TO-220	6-180 6-180 6-182 6-182 6-182
2N6569 2N6576 2N6577 BC323 BD220	NPN NPN NPN NPN NPN	12 15 15 5.0 4.0	40 60 90 60 70	15/200 2K/20K 2K/20K 50/250 30/120	4.0 4.0 4.0 0.5 0.5	1.5 4.0 4.0 0.15 1.0	4.0 15 15 0.5 0.5	1.5 10 10 - 0.8	100 120 120 7.0 36	TO-3 TO-3 TO-3 TO-39 TO-220	6-184 6-186 6-186 6-189 6-191
BD221 BD222 BD223 BD224 BD225	NPN NPN PNP PNP PNP	4.0 4.0 4.0 4.0 4.0	40 60 70 40 60	30/120 20/80 30/120 30/120 20/80	1.0 1.5 0.5 1.0 1.5	1.0 1.0 1.0 1.0 1.0	1.0 1.5 0.5 1.0 1.5	0.8 0.8 0.8 0.8 0.8	36 36 36 36 36	TO-220 TO-220 TO-220 TO-220 TO-220	6-191 6-191 6-194 6-194 6-194
BFX34 BF257 BF258 BF259 BF336	NPN NPN NPN NPN NPN	5.0 0.1 0.1 0.1 0.1	60 160 250 300 180	40/150 25/- 25/- 25/- 20/-	2.0 0.03 0.03 0.03 0.03	1.0 1.0 1.0 1.0	5.0 0.03 0.03 0.03	70 75* 75* 75* 50	5.0 1.0 1.0 1.0	TO-39 TO-39 TO-39 TO-39 TO-39	6-197 6-200 6-200 6-200 6-202
BF337 BF338 FT47 FT48 FT49	NPN NPN NPN NPN NPN	0.1 0.1 1.0 1.0	200 225 250 300 350	20/- 20/- 30/150 30/150 30/150	0.03 0.03 0.3 0.3 0.3	1.0 1.0 1.0	1.0 1.0 1.0	50 50 10 10	1.0 1.0 40 40 40	TO-39 TO-39 TO-220 TO-220 TO-220	6-202 6-202 6-204 6-204 6-204
FT50 FT317 FT317A FT317B FT359	NPN NPN NPN NPN NPN	1.0 4.0 4.0 4.0 10	400 100 120 140 350	30/150 35/- 35/- 35/- 250/-	0.3 1.0 1.0 1.0 3.0	1.0 0.5 0.5 0.5 2.5	1.0 1.0 1.0 1.0 7.0	10 20 20 20	40 40 40 40 125	TO-220 TO-220 TO-220 TO-220 TO-3	6-204 6-206 6-206 6-206 6-208
FT401 FT402 FT410 FT411 FT413	NPN NPN NPN NPN NPN	2.0 3.5 7.5 7.5 7.5	300 325 200 300 325	20/100 20/100 30/90 30/90 20/80	0.5 0.5 1.0 1.0 0.5	0.8 2.0 0.8 0.8 0.8	0.5 3.0 1.0 1.0 0.5	2.0 2.0 - -	100 100 100 100 100	TO-3 TO-3 TO-3 TO-3 TO-3	6-210 6-210 6-212 6-212 6-214
FT417 FT417A FT417B FT423 FT430	PNP PNP PNP NPN NPN	4.0 4.0 4.0 7.5 10	100 120 140 325 300	35/- 35/- 35/- 30/90 15/45	1.0 1.0 1.0 1.0 2.5	0.5 0.5 0.5 0.8 0.9	1.0 1.0 1.0 1.0 2.5	20 20 20 -	40 40 40 100 125	TO-220 TO-220 TO-220 TO-3 TO-3	6-216 6-216 6-216 6-214 6-218
FT431 FT2955 FT3055 FT5415 FT5416	NPN PNP NPN PNP PNP	10 10 10 1.0 1.0	325 60 60 200 300	15/35 20/70 20/70 30/150 30/120	2.5 4.0 4.0 0.05 0.05	0.7 1.1 1.1 -	2.5 4.0 4.0	2.0 2.0 15 15	125 70 70 10	TO-3 TO-220 TO-220 TO-39 TO-39	6-218 6-220 6-222
MJ802 MJ4502 MJE3055F SE7055 SE7056	NPN PNP NPN NPN NPN	30 30 10 0.5 0.5	90 90 60 220 300	25/100 25/100 20/70 40/- 40/-	7.5 7.5 4.0 0.01 0.01	0.8 0.8 1.1 1.0 1.0	7.5 7.5 4.0 0.02 0.02	2.0 2.0 2.0 50 50	200 200 70 1.0 1.0	TO-3 TO-3 TO-220 TO-39 TO-39	6-224 6-226 6-228 6-232 6-232

DEV	ICE	lc	VCEO	h _{FE}		VCE	(sat)	f _T	P _{D(Max)} T _C =25°C	PACK-	DATA
POLA		Max A	Max V	Min/Max	A O	Max	@ IC A	Min MHz	W W	AGE	PAGE NO
SE9300	NPN	10	60	1K/-	4.0	2.0	4.0	1.0	70	TO-220	6-235
SE9301	NPN	10	80	1K/-	4.0	2.0	4.0	1.0	70	TO-220	6-235
SE9302	NPN	10	100	1K/-	4.0	2.0	4.0	1.0	70	TO-220	6-235
SE9303	NPN	10	60	1K/-	4.0	2.0	4.0	1.0	100	TO-3	6-237
SE9304	NPN	10	80	1K/-	4.0	2.0	4.0	1.0	100	TO-3	6-237
SE9305	NPN	10	100	1K/-	4.0	2.0	4.0	1.0	100	TO-3	6-237
SE9331	NPN	1.0	300	30/250	0.1	2.5	10	10	20	TO-66	6-239
SE9400	PNP	10	60	1K/-	4.0	2.0	4.0	1.0	70	TO-220	6-241
SE9401	PNP	10	80	1K/-	4.0	2.0	4.0	1.0	70	TO-220	6-241
SE9402	PNP	10	100	1K/-	4.0	2.0	4.0	1.0	70	TO-220	6-241
SE9403	PNP	10	60	1K/-	4.0	2.0	4.0	1.0	100	TO-3	6-243
SE9404	PNP	10	80	1K/-	4.0	2.0	4.0	1.0	100	TO-3	6-243
SE9405	PNP	10	100	1K/-	4.0	2.0	4.0	1.0	100	TO-3	6-243
TIP29	NPN	3.0	40	15/75	1.0	0.7	1.0	3.0	30	TO-220	6-245
TIP29A	NPN	3.0	60	15/75	1.0	0.7	1.0	3.0	30	TO-220	6-245
TIP29B	NPN	3.0	80	15/75	1.0	0.7	1.0	3.0	30	TO-220	6-245
TIP29C	NPN	3.0	100	15/75	1.0	0.7	1.0	3.0	30	TO-220	6-245
TIP30	PNP	3.0	40	15/75	1.0	0.7	1.0	3.0	30	TO-220	6-248
TIP30A	PNP	3.0	60	15/75	1.0	0.7	1.0	3.0	30	TO-220	44 - 14 C 74 A 12 B 70 K 20 C 14 C 15 C
TIP30B	PNP	3.0	80	15/75	1.0	0.7	1.0	3.0	30	TO-220	6-248 6-248
TIP30C	PNP	3.0	100	15/75	1.0	0.7	1.0	3.0	30	TO 220	0.040
TIP31	NPN		40	10/50	3.0	1.2	3.0		40	TO-220	6-248
TIP31A	NPN	5.0 5.0	60	10/50	3.0	1.2	3.0	3.0	40	TO-220	6-251
TIP31B	1	1		1		1.2	3.0	3.0	1	TO-220	6-251
TIP316	NPN NPN	5.0 5.0	100	10/50 10/50	3.0 3.0	1.2	3.0	3.0	40 40	TO-220 TO-220	6-251 6-251
TIP32	DND	.	40	10/50		1.2	3.0		40	TO 222	ing the Sheet sheet Mark the common to the
	PNP	5.0	40	10/50	3.0	1.2		3.0	40	TO-220	6-254
TIP32A	PNP	5.0	60	10/50	3.0	1.2	3.0	3.0	40	TO-220	6-254
TIP32B	PNP	5.0	80	10/50	3.0	1.2	3.0	3.0	40	TO-220	6-254
TIP32C	PNP	5.0	100	10/50	3.0	1.2	3.0	3.0	40	TO-220	6-254
TIP41	NPN	6.0	40	30/-	0.3	1.5	6.0	3.0	65	TO-220	6-257
TIP41A	NPN	6.0	60	30/-	0.3	1.5	6.0	3.0	65	TO-220	6-257
TIP41B	NPN	6.0	80	30/-	0.3	1.5	6.0	3.0	65	TO-220	6-257
TIP41C	NPN	6.0	100	30/-	0.3	1.5	6.0	3.0	65	TO-220	6-257
TIP42	PNP	6.0	40	30/-	0.3	1.5	6.0	3.0	65	TO-220	6-259
TIP42A	PNP	6.0	60	30/-	0.3	1.5	6.0	3.0	65	TO-220	6-259
TIP42B	PNP	6.0	80	30/-	0.3	1.5	6.0	3.0	65	TO-220	6-259
TIP42C	PNP	6.0	100	30/-	0.3	1.5	6.0	3.0	65	TO-220	6-259
TIP61	NPN	0.5	40	40/-	0.05	0.7	0.5	3.0	15	TO-220	6-261
TIP61A	NPN	0.5	60	40/-	0.05	0.7	0.5	3.0	15	TO-220	6-261
TIP61B	NPN	0.5	80	40/-	0.05	0.7	0.5	3.0	15	TO-220	6-261
TIP61C	NPN	0.5	100	40/-	0.05	0.7	0.5	3.0	15	TO-220	6-261
TIP62	PNP	0.5	40	40/-	0.05	0.7	0.5	3.0	15	TO-220	6-263
TIP62A	PNP	0.5	60	40/-	0.05	0.7	0.5	3.0	15	TO-220	
TIP62B	PNP	0.5	80	40/-	0.05	0.7	0.5		15	TO-220	6-263
TIP62C	PNP	0.5	100	40/-	0.05	0.7	0.5	3.0 3.0	15	TO-220	6-263 6-263
TID110	ALDE	2.2	-			-					1.00
TIP110	NPN	2.0	60	1K/-	1.0	2.5	2.0	-	50	TO-220	6-265
TIP111	NPN	2.0	80	1K/-	1.0	2.5	2.0	-	50	TO-220	6-265
TIP112	NPN	2.0	100	1K/-	1.0	2.5	2.0	-	50	TO-220	6-265
TIP115	PNP	2.0	60	1K/-	1.0	2.5	2.0	l -	50	TO-220	6-267
TIP116	PNP	2.0	80	1K/-	1.0	2.5	2.0		50	TO-220	6-267

DEVICE POLARITY		I _C Max	V _{CEO} Max	h _{FE} Min/Max @ I _C A		VCE(sat) Max @ IC V A		f _T Min MHz	P _{D(Max)} T _C =25°C W	PACK- AGE	DATA SHEET PAGE NO
					MENT AL	**************************************	to the same		63636373000111	•	100
TIP117	PNP	2.0	100	1K/-	1.0	2.5	2.0	-	50	TO-220	6-267
TIP120	NPN	5.0	60	1K/-	0.5	2.0	3.0	-	65	TO-220	6-269
TIP121	NPN	5.0	80	1K/-	0.5	2.0	3.0	-	65	TO-220	6-269
TIP122	NPN	5.0	100	1K/-	0.5	2.0	3.0	-	65	TO-220	6-269
TIP125	PNP	5.0	60	1K/-	0.5	2.0	3.0	-,	65	TO-220	6-271
TIP126	PNP	5.0	80	1K/-	0.5	2.0	3.0	_	65	TO-220	6-271
TIP127	PNP	5.0	100	1K/-	0.5	2.0	3.0	-	65	TO-220	6-271

	VICE ARITY	VCEO Max	h _{FE} Min/Max	@ lc	V _{CE(sat}) @ lc	f _T Min	P _{D(Max)} T _C = 25°C	PACK- AGE	DATA SHEET
NPN	PNP	V		A	V	A	MHz	W	AGE	PAGE NO
I _C = 0.1 A	Max Conti	inuous								
BF257		160	25/-	0.03	1.0	0.03	*75	1.0	TO-39	6-200
BF336	1	180	20/-	0.03			50	1.0	TO-39	6-202
BF337		200	20/-	0.03			50	1.0	TO-39	6-202
BF338		225	20/-	0.03			50	1.0	TO-39	6-202
BF258		250	25/-	0.03	1.0	0.03	*75	1.0	TO-39	6-200
BF259		300	25/-	0.03	1.0	0.03	*75	1.0	TO-39	6-200
$\frac{I_{\mathbf{C}} = 0.15 \text{ /}}{2.17222}$	A Max Con		<u> </u>		<u> </u>			Tarana and a same	<u> </u>	
2N5059 2N5058		250 300	30/150 35/150	0.03	1.0 1.0	0.03	30 30	1.0	TO-39 TO-39	6-63 6-63
I _C = 0.5 A	Max Conti		1 00/100		1.0	0.00		1.0	10-33	0-03
	TIP62	T	10/	0.05	0.07	٥٢	2.0	16	TO 222	6 261
TIP61 TIP61A	TIP62	40 60	40/-	0.05	0.07	0.5	3.0	15	TO-220	6 261
TIP61A	TIP62A	80	40/- 40/-	0.05 0.05	0.07 0.07	0.5 0.5	3.0 3.0	15 15	TO-220 TO-220	
TIP61C	TIP62C	100	40/-	0.05	0.07	0.5	3.0	15	TO-220	
SE7055	111 020	220	40/-	0.03	1.0	0.02	50	1.0	TO-39	6-232
SE7056		300	40/-	0.03	1.0	0.02	50	1.0	TO-39	6-232
I _C = 1.0 A	Max Cont		<u> </u>						l	<u> </u>
	2N4898	40	20/100	0.5	0.6	1.0	3.0	25	TO-66	6-43
2N4910	2.11.000	40	20/100	0.5	0.6	1.0	4.0	25	TO-66	6-54
	2N3740	60	30′ 100	0.25	0.6	1.0	4.0	25	TO-66	6-16
2N4911		60	20/100	0.5	0.5	1.0	4.0	25	TO-66	6-54
	2N4899	60	20/100	0.5	0.6	1.0	3.0	25	TO-66	6-43
	2N3741	80	30/100	0.25	0.6	1.0	4.0	25	TO-66	6-16
	2N4900	80	20/100	0.5	0.6	1.0	3.0	25	TO-66	6-43
2N4912		80	20/100	0.5	0.6	1.0	4.0	25	TO-66	6-54
2N5681	2N5679	100	40/150	0.25	1.0	0.5	30	10	TO-39	6-95
2N5682	2N5680	120	40/150	0.25	1.0	0.5	30	10	TO-39	6-95
	2N5415	200	30/150	0.05	2.5	0.5	15	10	TO-39	6-87
2N3440		250	40/160	0.02	0.5	0.05	15	10	TO-39	6-10
FT47		250	30/150	0.3	1.0	1.0	10	40	TO-220	
SE9331		300	30/250	0.1	2.5	0.1	10	20	TO-66	6-239
FT48		300	30/150	0.3	1.0	1.0	10	40	TO-220	
	2N5416	300	30/120	0.05	2.0	0.05	15	10	TO-39	6-87
2N3439	· ·	350	40/160	0.02	0.5	0.05	15	10	TO-39	6-10
FT49 FT50		350 400	30/150 30/150	0.3	1.0 1.0	1.0 1.0	10 10	40 40	TO-220 TO-220	
$I_C = 2.0 A$	Max Cont		00,100		1	1.0			10 220	J 20.
2N5321	T	50	40/250	0.5	0.8	0.5	50	10	TO-39	6-72
2.10021	2N5323	50	40/250	0.5	0.8	0.5	50	10	TO-39	6-75
TIP110	TIP115	60	1K/-	1.0	2.5	2.0	00	50	TO-220	
2N5320	2N5322	75	30/130	0.5	0.5	0.5	50	10	TO-39	6-72,75
TIP111	TIP116	80	1K/-	1.0	2.5	2.0		50	TO-220	6-265,267
TIP112	TIP117	100	1K/-	1.0	2.5	2.0		50	TO-220	
FT401		300	20/100	0.5	0.8	0.5	2.0	100	TO-3	6-210
$I_C = 3.0 A$	Max Cont	inuous								
	2N4234	40	30/150	0.25	0.6	1.0	3.0	6.0	TO-39	6-31
TIP29	TIP30	40	15/75	1.0	0.7	1.0	3.0	30		6-245,248
	2N4235	60	30/150	0.25	0.6	1.0	3.0	6.0	TO-39	6-31
2N3766		60	40/160	0.5	1.0	0.5	10	20	TO-66	6-19

	VICE ARITY	VCEO Max	h _{FE} Min/Max	@ lc	V _{CE(sat)} Max @	lc	f _T Min	PD(Max) T _C = 25°C	PACK- AGE	DATA SHEET
NPN	PNP	V		Ā	V	A	MHz	W	AGE	PAGE NO
I _C = 3.0 A	Max Cont	inuous ((Cont'd)			-				
TIP29A	TIP30A	60	15/75	1.0	0.7	1.0	3.0	30	TO-220	6-245,248
2N5334		60	30/150	1.0	0.7	2.0	40	6.0	TO-39	6-78
	2N4236	80	30/150	0.25	0.6	1.0	3.0	6.0	TO-39	6-31
2N3767		80	40/160	0.5	1.0	0.5	10	20	TO-66	6-19
TIP29B°	TIP30B	80	15/75	1.0	0.7	1.0	3.0	30	TO-220	6-245,248
2N5335		80	30/150	1.0	0.7	2.0	40	6.0	TO-39	6-78
TIP29C	TIP30C	100	15/75	1.0	0.7	1.0	3.0	30	TO-220	6-245,248
2N5838		250	8/40	3.0	1.0	3.0	5.0	100	TO-3	6-105
2N5839		275	10/50	2.0	1.5	2.0	5.0	100	TO-3	6-105
FT402	-	325	20/100	0.5	2.0	3.0	2.0	100	TO-3	6-210
2N5840		350	10/50	2.0	1.5	2.0	5.0	100	TO-3	6-105
$I_C = 4.0 A$	Max Conti	nuous								
BD221	BD224	40	30/120	1.0	1.0	1.0	0.8	36		6-191
2N4231		40	25/100	1.5	0.7	1.5	4.0	35	TO-66	6-28
2N4237		40	30/150	0.25	0.6	1.0	1.0	6.0	TO-39	6-34
2N6121	2N6124	45	25/100	1.5	0.6	1.5	2.5	40	TO-220	6-146,149
2N3054		55	25/150	0.5	1.0	0.5		25	TO-66	6-3
BD222	BD225	60	20/80	1.5	1.0	1.5	0.8	36		6-191,194
2N6122	2N6125	60	25/100	1.5	0.6	1.5	2.5	40	TO-220	6-146,149
2N4232		60	25/100	1.5	0.7	1.5	4.0	35	TO-66	6-28
2N4238		60	30/150	0.25	0.6	1.0	1.0	6.0	TO-39	6-34
BD220	BD223	70	30/120	0.5	1.0	0.5	0.8	36		6-191,194
2N6123	2N6126	80	20/80	1.5	0.6	1.5	2.5	40		6-146,149
2N4233		80	25/100	1.5	0.7	1.5	4.0	35	TO-66	6-28
2N4239		80	30/150	0.25	0.6	1.0	1.0	6.0	TO-39	6-34
FT317	FT417	100	35/-	1.0	0.5	1.0	20	40		6-206,216
2N6473	2N6475	100	15/150	1.5	1.2	1.5	10	40		6-176,178
FT317A	FT417A	120	35/-	1.0	0.5	1.0	20	40	TO-220	6-206,216
2N6474	2N6476	120	15/150	1.5	1.2	1.5	10	40		6-176,178
FT317B	FT417B	140	35/-	1.0	0.5	1.0	20	40	TO-220	6-206,216
	Max Cont	T	00.00			4.0	1 40	07.5	T-0.0	
2N5067	2N4901	40	20/80	1.0	0.4	1.0	4.0	87.5	TO-3	6-66,46
2N4913	2N4904	40	25/100	2.5	1.5	5.0	4.0	87.5	TO-3	6-57,49
TIP31	TIP32	40	10/50	3.0	1.2	3.0	3.0	40	TO 220	6-251,254
TIP120 BC323	TIP125	60 60	1K/- 50/250	0.5 0.5	2.0 0.15	3.0		65 7.0	TO-220 TO-39	6-269,271
	2N4902	60	20/80		0.15	0.5	4.0	87.5	TO-39	6-189
2N5068	2114902	60	40/120	1.0 2.0	1.0	1.0 5.0	50	7.0	TO-39	6-66,46
2N4895		1	40/120		j .	0.5	70	5.0	TO-39	6-40
BFX34 2N4896		60	100/300	2.0 2.0	1.0 1.0	5.0	80	7.0	TO-39	6-197
2N4696 2N4914	2N400E	60	25/100	2.5	1.5	5.0	4.0		TO-39	6-40
71P31A	2N4905 TIP32A	60	10/50	3.0	1.3	3.0	3.0	87.5 40	TO-220	6-57,49
TIP121	TIP126	80	16/30 1K/-	0.5	2.0	3.0	3.0	65	TO-220	6-251,254
2N5069	2N4903	80	20/80	1.0	0.4	1.0	4.0	87.5	TO-3	6-269,271 6-66,46
2N4897	2.1,7503	80	40/120	2.0	1.0	5.0	50	7.0	TO-39	6-40
2N5336		80	30/120	2.0	0.7	2.0	30	6.0	TO-39	6-81
2N5330 2N5337	1 1	80	60/240	2.0	0.7	2.0	30	6.0	TO-39	6-81
2N3337 2N4915	2N4906	.80	25/100	2.5	1.5	5.0	4.0	87.5	TO-33	6-57,49
71P31B	TIP32B	80	10/50	3.0	1.5	3.0	3.0	40.0	TO-220	6-251,254
TIP122	TIP127	100	16/30 1K/-	0.5	2.0	3.0] 3.0	65	TO-220	6-269,271
2N5338	''' 'Z'	100	30/120	2.0	0.7	2.0	30	6.0	TO-39	6-84
TYPICAL VALUE	L		1 33/120		L					1 3 3 4

	VICE ARITY PNP	V _{CEO} Max V	h _{FE} Min/Max	@ I _C	VCE(sat) Max @ V	I _C	f _T Min MHz	PD(Max) T _C = 25°C W	PACK- AGE	DATA SHEET PAGE NO
$I_C = 5.0 A$	Max Conti	nuous (C	i Cont'd)				L		l	
2N5339		100	60/240	2.0	0.7	2.0	30	6.0	TO-39	6-84
TIP31C	TIP32C	100	10/50	3.0	1.2	3.0	3.0	40	TO-220	6-251,254
$I_C = 6.0 A$	Max Conti	nuous								
TIP41	TIP42	40	30/-	0.3	1.5	6.0	3.0	65	TO-220	6-257,259
TIP41A	TIP42A	60	30/-	0.3	1.5	6.0	3.0	65	TO-220	6-257,259
TIP41B	TIP42B	80	30/-	0.3	1.5	6.0	3.0	65	TO-220	
TIP41C	TIP42C	100	30/-	0.3	1.5	6.0	3.0	65	TO-220	6-257,259
$I_C = 7.0 A$	Max Conti	nuous								
2N6129	2N6132	40	20/100	2.5	1.4	7.0	2.5	50	TO-220	
2N5873	2N5871	60	20/100	2.5	1.0	4.0	4.0	115	TO-3	6-111,108
2N6130	2N6133	60	20/100	2.5	1.4	7.0	2.5	50	TO-220	
2N5874	2N5872	80	20/100	2.5	1.0	4.0	4.0	115	TO-3	6-111,108
2N6131	2N6134	80	20/100	2.5	2.8	7.0	2.5	50	TO-220	6-152,155
I _C = 7.5 A	Max Conti	nuous	<u>, </u>						T	
FT410		200	30/90	1.0	0.8	1.0	*5.0	100	TO-3	6-212
FT411		300	30/90	1.0	0.8	1.0	*5.0	100	TO-3	6-212
FT413 FT423		325 325	20/80 30/90	0.5	0.8 0.8	0.5	*5.0	100	TO-3	6-214
			30/90	1.0	0.8	1.0	*5.0	100	TO-3	6-214
$I_C = 8.0 \text{ A}$	T	T	T				r	Т	Т	r
2N5877	2N5875	60	20/100	4.0	1.0	5.0	4.0	150	TO-3	6-117,114
2N6055 2N5878	2N6053 2N5876	60 80	750/18K 20/100	4.0	2.0	4.0	4.0	100	TO-3	6-140,137
2N6056	2N6054	80	750/18K	4.0 4.0	1.0 2.0	5.0 4.0	4.0 4.0	150 100	TO-3 TO-3	6-117,137
2N6306	2110034	250	15/75	3.0	0.8	3.0	5.0	125	TO-3	6-140,137 6-167
2N6307M		300	15/75	· 3.0	1.0	3.0	5.0	125	TO-3	6-167
2N6308M		350	12/60	3.0	1.5	3.0	5.0	125	TO-3	6-167
I _C = 10.0	A Max Con	tinuous	<u> </u>			,				
2N6386		40	1K/20K	3.0	2.0	3.0	20	40	TO-220	6-173
	2N4907	40	20/80	4.0	0.75	4.0	4.0	150	TO-3	6-52
2N6383		40	1K/20K	5.0	2.0	5.0	20	100	TO-3	6-170
2N3713		60	25/75	1.0	1.0	5.0	4.0	150	TO-3	6-13
	2N3789	60	25/90	1.0	1.0	5.0	4.0	150	TO-3	6-25
2N3715		60	50/150	1.0	0.8	5.0	4.0	150	TO-3	6-13
0110007	2N3791	60	50/180	1.0	1.0	5.0	4.0	150	TO-3	6-25
2N6387		60	1K/20K	3.0	2.0	3.0	20	40	TO-220	
MJE3055F	2N4908	60 60	20/70 20/80	4.0 4.0	1.1 0.75	4.0 4.0	2.0 4.0	70 150	TO-220 TO-3	II. Made vince Call Service
SE9300	SE9400	60	1K/-	4.0	2.0	4.0	1.0	70	TO-220	6-52
SE9303	SE9403	60	1K/-	4.0	2.0	4.0	1.0	100	TO-3	6-235,241
2N6384	020400	60	1K/20K	5.0	2.0	5.0	20	100	TO-3	6-237,243 6-170
2N3714		80	25/75	1.0	1.0	5.0	4.0	150	TO-3	6-170
	2N3790	80	25/90	1.0	1.0	5.0	4.0	150	TO-3	6-25
2N3716		80	50/150	1.0	0.8	5.0	4.0	150	TO-3	6-13
	2N3792	80	50/180	1.0	1.0	5.0	4.0	150	TO-3	6-25
2N6388		80	1K/20K	3.0	2.0	3.0	20	40	TO-220	6-173
05000	2N4909	80	20/80	4.0	0.75	4.0	4.0	150	TO-3	6-52
SE9304	SE9404	80	1K/-	4.0	2.0	4.0	1.0	100	TO-3	6-237,243
SE9301	SE9401	80	1K/-	4.0	2.0	4.0	1.0	70	TO-220	6-235,241

TYPICAL VALUE

POLA	VICE ARITY	V _{CEO} Max	h _{FE} Min/Max (@ lc	VCE(sat) Max @	lc	f _T Min	PD(Max) T _C = 25°C	PACK-	DATA SHEET
NPN	PNP	٧		Α	V	Α	MHz	W	100	PAGE NO
$I_{C} = 10.0 A$	Max Cont	inuous (Cont'd)							
2N6385		80	1K/20K	5.0	2.0	5.0	20	100	TO-3	6-170
SE9302	SE9402	100	1K/-	4.0	2.0	4.0	1.0	70		6-235,241
SE9305	SE9405	100	1K/-	4.0	2.0	4.0	1.0	100	TO-3	6-237,243
2N6249		200	10/50	10	1.5	10	2.5	100	TO-3	6-158
2N6250		275	8/50	10	1.5	10	2.5	100	TO-3	6-158
FT430		300	15/45	2.5	0.9	2.5		125	TO-3	6-218
FT431 FT359		325	15/35	2.5	0.7	2.5		125	TO-3	6-218
2N6251		350 350	250/- 6/50	3.0 10	2.8 1.5	7.0 10	2.5	125 100	TO-3 TO-3	6-208 6-158
I _C = 12.0 Å	A Max Cont								L	
2N6569		40	15/200	0.2	1.5	4.0	1.5	100	TO-3	6-184
2N6057	2N6050	60	750/18K	6.0	2.0	6.0	4.0	150	TO-3	6-143,134
2N5881	2N5879	60	20/100	6.0	1.0	7.0	4.0	160	TO-3	6-123,120
2N5882	2N5880	80	20/100	6.0	1.0	7.0	4.0	160	TO-3	6-123,120
2N6058	2N6051	80	750/18K	6.0	2.0	6.0	4.0	150	TO-3	6-143,134
2N6059	2N6052	100	750/18K	6.0	2.0	6.0	4.0	150	TO-3	6-143,134
$I_{\mathbf{C}} = 15.0 \text{ A}$	A Max Cont	inuous	т		-		r		· .	
2N6486	2N6489	40	20/150	5.0	1.3	5.0	5.0	75		6-180,182
2N6576	1.5	60	2K/20K	4.0	4.0	15	10	120		6-186
2N3055SD	l	60	20/70	4.0	1.1	4.0	0.8	115	TO-3	6-8
FT3055	FT2955	60	20/70	4.0	1.1	4.0	2.0	70		6-222,220
2N3055		60	20/70	4.0	1.1	4.0		117	TO-3	6-6
2N6487	2N6490	60	20/150	5.0	1.3	5.0	5.0	75	TO-220	6-180,182
2N6488 2N6577	2N6491	80 90	20/150 2K/20K	5.0 4.0	1.3 4.0	5.0 15	5.0 10	75 120	TO-220	6-180,182 6-186
	A Max Cont	inuous							L	U
2N5629		100	25/100	8.0	1.0	10	0.5	200	TO-3	6-90
	2N6029	100	25/100	8.0	2.0	16	1.0	200	TO-3	6-132
2N5630		120	20/80	8.0	1.0	10	0.5	200	TO-3	6-90
	2N6030	120	20/80	8.0	2.0	16	1.0	200	TO-3	6-132
2N5631		140	15/60	8.0	1.0	10	0.5	200	TO-3	6-90
	2N6031	140	15/60	8.0	2.0	16	1.0	200	TO-3	6-132
	A Max Cont		T							
2N3772		60	15/60	10	1.4	10	0.2	150	TO-3	6-22
2N5885	2N5883	60	20/100	10	1.0	15	4.0	200	TO-3	6-129,126
2N6282	2N6285	60	750/18K	10	2.0	10	1	160		6-161,164
2N5039	2110200	75	20/100	10	1.0	10	60	140	TO-3	6-60
2N6283	2N6286	80	750/18K 20/100	10	2.0	10	4.0	160	TO-3	6-161,164 6-129,126
2N5886	2N5884	80 80	15/60	10 10	1.0 2.0	15 20	4.0 2:0	200 200	TO-3 TO-3	6-69
2N5303 2N5038		90	20/100	12	1.0	12	60	140	TO-3	6-60
2N6284	2N6287	100	750/18K	10	2.0	10	4.0	160	TO-3	6-161,164
I _C = 30.0A	Max Conti	inuous	1		I		L			
2N3771		40	15/60	15	2.0	15	0.2	150	TO-3	6-22
	2N4398	40	15/60	15	1.0	15	4.0	200	TO-3	6-37
2N5301		40	15/60	15	2.0	20	2.0	200	TO-3	6-69
	2N4399	60	15/60	15	1.0	15	4.0	200	TO-3	6-37
2N5302		60	15/60	15	2.0	20	2.0	200	TO-3	6-69
MJ802	MJ4502	90	25/100	7.5	0.8	7.5	2.0	200	TO-3	6-224,226

	VICE ARITY PNP	VCEO Max V	h _{FE} Min/Max @	P IC A	VCE(sat) Max @ V	I _C	f _T Min MHz	P _D (Max) T _C = 25°C W	PACK- AGE	DATA SHEET PAGE NO
I _C = 50.0	A Max Cor	itinuous								
2N5685 2N5686	2N5683 2N5684	60 80	15/60 15/60	25 25	1.0 1.0	25 25	2.0 2.0	300 300	TO-3 TO-3	6-101,98 6-101,98

^{&#}x27;TYPICAL VALUE

	VICE	lc	VCEO	hFE		V _{CE(sa}	ıt)	fT	P _D (Max)	DATA
POLA	ARITY	Max	Max	Min/Max	-	Max @		Min	T _C =25°C	SHEET
NPN	PNP	A	A		Α	V	А	MHz	W	PAGE NO
TO-220 Pa	ckage									
TIP61	TIP62	0.5	40	40/-	0.5	0.7	0.5	3.0	15	6-261,263
TIP61A	TIP62A	0.5	60	40/-	0.5	0.7	0.5	3.0	15	6-261,263
TIP61B	TIP62B	0.5	80	40/-	0.5	0.7	0.5	3.0	15	6-261,263
TIP61C FT47	TIP62C	0.5 1.0	100 250	40/- 30/150	0.5 0.3	0.7 1.0	0.5 1.0	3.0 10	15 40	6-261,263 6-204
FT48		1.0	300	30/150	0.3	1.0	1.0	10	40	6-204
FT49		1.0	350	30/150	0.3	1.0	1.0	10	40	6-204
FT50		1.0	400	30/150	0.3	1.0	1.0	10	40	6-204
TIP110	TIP115	2.0	60	1K/-	1.0	2.5	2.0	-	50	6-265,267
TIP111	TIP116	2.0	80	1K/-	1.0	2.5	2.0	-	50	6-265,267
TIP112	TIP117	2.0	100	1K/-	1.0	2.5	2.0	-	50	6-265,267
TIP29	TIP30	3.0	40	15/75	1.0	0.7	1.0	3.0	30	6-245,248
TIP29A	TIP30A	3.0	60	15/75	1.0	0.7	1.0	3.0	30	6-245,248
TIP29B TIP29C	TIP30B TIP30C	3.0 3.0	80 100	15/75 15/75	1.0 1.0	0.7	1.0 1.0	3.0	30 30	6-245,248 6-245,248
BD221	BD224	4.0	40	30/120	1.0	1.0	1.0	0.8	36	6-191.194
2N6121	2N6124	4.0	45	25/100	1.5	0.6	1.5	2.5	40	6-146,149
BD222	BD225	4.0	60	20/80	1.5	1.0	1.5	0.8	36	6-191,194
2N6122	2N6125	4.0	60	25/100	1.5	0.6	1.5	2.5	40	6-146,149
BD220	BD223	4.0	70	30/120	0.5	1.0	0.5	0.8	36	6-191,194
2N6123	2N6126	4.0	80	20/80	1.5	0.6	1.5	2.5	40	6-146,149
2N6473	2N6475	4.0	100	15/150	1.5	1.2	1.5	10	40	6-176,178
FT317	FT417	4.0	100	35/-	1.0	0.5	1.0	20	40	6-206,216
2N6474 FT317A	2N6476 FT417A	4.0 4.0	120 120	15/150 35/-	1.5 1.0	1.2 0.5	1.5 1.0	10 20	40 40	6-176,178 6-206,216
FT317B	FT417B	4.0	140	35/-	1.0	0.5	1.0	20	40	6-206,216
TIP31	TIP32	5.0	40	10/50	3.0	1.2	3.0	3.0	40	6-251,254
TIP120	TIP125	5.0	60	1K/-	0.5	2.0	3.0	1 -	65	6-269,271
TIP31A	TIP32A	5.0	60	10/50	3.0	1.2	3.0	3.0	40	6-251,254
TIP121	TIP126	5.0	80	1K/-	0.5	2.0	3.0	-	65	6-269,271
TIP31B	TIP32B	5.0	80	10/50	3.0	1.2	3.0	3.0	40	6-251,254
TIP122	TIP127	5.0	100	1K/-	0.5	2.0	3.0	-	65	6-269,271
TIP31C	TIP32C	5.0	100	10/50	3.0	1.2	3.0	3.0	40	6-251,254
TIP41 TIP41A	TIP42 TIP42A	6.0 6.0	40 60	30/-	0.3 0.3	1.5 1.5	6.0 6.0	3.0	65 65	6-257,259 6-257,259
TIP41B	TIP42B	6.0	80	30/-	0.3	1.5	6.0	3.0	65	6-257,259
TIP41C	TIP42C	6.0	100	30/-	0.3	1.5	6.0	3.0	65	6-257,259
2N6129	2N6132	7.0	40	20/100	2.5	1.4	7.0	2.5	50	6-152,155
2N6130	2N6133	7.0	60	20/100	2.5	1.4	7.0	2.5	50	6-152,155
2N6131	2N6134	7.0	80	20/100	2.5	2.0	7.0	2.5	50	6-152,155
2N6386		10	40	1K/20K	3.0	2.0	3.0	20	40	6-180
FT3055	FT2955	10	60	20/70	4.0	1.1	4.0	2.0	70	6-222,220
MJE3055F	050400	10	60	20/70	4.0	1.1	4.0	2.0	70	6-228
SE9300	SE9400	10	60	1K/-	4.0	2.0	4.0	1.0	70	6-235,241
2N6387	<u> </u>	10	60	1K/20K	3.0	2.0	3.0	20	40	6-173

DE	VICE	lc	VCEO	hFE		V _{CE(se}		fT	PD(Max)	DATA
POL	ARITY	Max	Max	Min/Max	@ lc	Max @	l _C	Min	T _C =25°C	SHEET
NPN	PNP	A	A		A	V	A	MHz	W	PAGE NO
TO-220 Pa	ackage									
SE9301	SE9401	10	80	1K/-	4.0	2.0	4.0	1.0	70	6-235,24
2N6388		10	80	1K/20K	3.0	2.0	3.0	20	40	6-173
SE9302	SE9402	10	100	1K/-	4.0	2.0	4.0	1.0	70	6-235,24
2N6486	2N6489	15	40	20/150	5.0	1.3	5.0	5.0	75	6-180,18
2N6487	2N6490	15	60	20/150	5.0	1.3	5.0	5.0	75	6-180,18
2N6488	2N6491	15	80	20/150	5.0	1.3	5.0	5.0	75	6-180,18
TO-39 Pac	ckage									7942-105
BF257		0.1	160	25/-	0.03	1.0 (0.03	75*	1.0	6-200
BF336	a la	0.1	180	20/-	0.03	1.04-00	1, - 1, 1,	50	1.0	6-202
BF337		0.1	200	20/-	0.03	-	- "	50	1.0	6-202
BF338		0.1	225	20/-	0.03	-	-	50	1.0	6-202
BF258		0.1	250	25/-	0.03	1.0 (0.03	75*	1.0	6-200
BF259		0.1	300	25/-	0.03	1.0	0.03	75*	1.0	6-200
2N5058		0.15	300	35/150	0.03	1.0 (30	1.0	6-63
2N5059		0.15	250	30/150	0.03	1.0 (30	1.0	6-63
SE7055		0.5	220	40/-	0.01	1.0 (50	1.0	6-232
SE7056	**	0.5	300	40/-	0.01	1.0		50	1.0	6-232
2N5681	2N5679	1.0	100	40/150	0.25	1.0	0.5	30	10	6-94,92
2N5682	2N5680	1.0	120	40/150	0.25	1.0	0.5	30	10	6-95,92
	2N5415	1.0	200	30/150	0.05	2.5 (15	10	6-87
2N3440	2.10-110	1.0	250	40/160	0.02	0.5		15	10	6-10
2.110-1-10	2N5416	1.0	300	30/120	0.05	2.0		15	10	6-87
2N3439		1.0	350	40/160	0.02	0.5 (0.05	15	10	6-10
2N5321	2N5323	2.0	50	40/250	0.5	0.8	0.5	50	10	6-72,75
2N5320	2N5322	2.0	75	30/130	0.5	0.5	0.5	50	10	6-72,75
2N4237	2N4234	4.0/3.0	40	30/150	0.25	0.6	1.0	1.0	6.0	6-34,31
2N5334	214234	3.0	60	30/150	1.0	0.7	2.0	40	6.0	6-78
2N4238	2N4235	4.0/3.0	60	30/150	0.25	0.6	1.0	1.0	6.0	6-34,31
2N4239	2N4236	4.0/3.0	80	30/150	0.25	0.6	1.0	1.0	6.0	6-34,31
2N5335	2114230	3.0	80	30/150	1.0	0.0	2.0	40	6.0	6-78
			60	50/250		0.15	0.5	40	7.0	6-189
BC323 BFX34		5.0 5.0	60	40/150	0.5 2.0	1.0	5.0	70	5.0	6-197
2N4895		50	60	40/120	2.0	1.0	5 0	F0	7.0	6.40
		5.0	60	40/120	2.0	1.0	5.0	50	7.0	6-40
2N4896		5.0	60	100/300	2.0	1.0	5.0	80	7.0	6-40
2N4897		5.0	80	40/120	2.0	1.0	5.0	50	7.0	6-40
2N5336		5.0	80	30/120	2.0	0.7	2.0	30	6.0	6-81
2N5337		5.0	80	60/240	2.0	0.7	2.0	30	6.0	6-81
2N5338		5.0	100	30/120	2.0	0.7	2.0	30	6.0	6-84
2N5339	<u> </u>	5.0	100	60/240	2.0	0.7	2.0	30	6.0	6-84
TO-66 Pac		1	T 40	T00/100		T 00	4.0	100	T 65	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2014040	2N4898	1.0	40	20/100	0.5	0.6	1.0	3.0	25	6-43
2N4910	01107.40	1.0	40	20/100	0.5	0.6	1.0	4.0	25	6-54
0114044	2N3740	1.0	60	30/100	0.25	0.6	1.0	4.0	25	6-16
2N4911		1.0	60	20/100	0.5	0.5	1.0	4.0	25	6-54
	2N4899	1.0	60	20/100	0.5	0.6	1.0	3.0	25	6-43

'TYPICAL VALUE

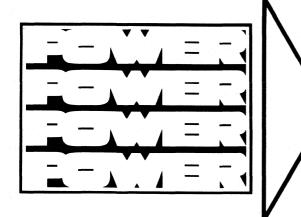
	VICE	l _C	VCEO	hFE		V _{CE(s}		fT	PD(Max)	DATA
	ARITY	Max	Max	Min/Max		Max @		Min	T _C =25°C	SHEET
NPN	PNP	Α	A		А	V	Α	MHz	W,	PAGE NO
TO-66 Pac	kage									
	2N3741	1.0	80	30/100	0.25	0.6	1.0	4.0	25	6-16
	2N4900	1.0	80	20/100	0.5	0.6	1.0	3.0	25	6-43
2N4912		1.0	80	20/100	0.5	0.6	1.0	5.0	25	6-54
SE9331		1.0	300	30/250	0.1	2.5	0.1	10	20	6-239
2N3766		3.0	60	40/160	0.5	1.0	0.5	10	20	6-19
2N3767		3.0	80	40/160	0.5	1.0	0.5	10	20	6-19
2N4231		4.0	40	25/100	1.5	0.7	1.5	4.0	35	6-28
2N3054		4.0	55	25/150	0.5	1.0	0.5	-	25	6-3
2N4232	1	4.0	60	25/100	1.5	0.7	1.5	4.0	35	6-28
2N4233		4.0	80	25/100	1.5	0.7	1.5	4.0	35	6-28
TO-3 Pack	age									
FT401		2.0	300	20/100	0.5	0.8	0.5	2.0	100	6-210
2N5838		30	250	8/40	3.0	1.0	3.0	5.0	100	6-105
2N5339		3.0	275	10/50	2.0	1.5	2.0	5.0	100	6-84
2N5840		3.0	350	10/50	2.0	1.5	2.0	5.0	100	6-105
FT402		3.5	325	20/100	0.5	2.0	3.0	2.0	100	6-210
	2N4901	5.0	40	20/80	1.0	1.5	5.0	4.0	87.5	6-46
2N5067		5.0	40	20/80	1.0	0.4	1.0	4.0	87.5	6-66
2N4913	2N4904	5.0	40	25/100	2.5	1.5	5.0	4.0	87.5	6-57,49
2N5068		5.0	60	20/80	1.0	0.4	1.0	4.0	87.5	6-66
	2N4902	5.0	60	20/80	1.0	1.5	5.0	4.0	87.5	6-46
2N4914	2N4905	5.0	60	25/100	2.5	1.5	5.0	4.0	87.5	6-57,49
211-101-1	2N4903	5.0	80	20/80	1.0	1.5	5.0	4.0	87.5	6-46
2N5069	2114500	5.0	80	20/80	1.0	0.4	1.0	4.0	87.5	6-66
2N4915	2N4906	5.0	80	25/100	2.5	1.5	5.0	4.0	87.5	6-57,49
2N5873	2N5871	7.0	60	20/100	2.5	1.0	4.0	4.0	115	6-111,108
0115074	0115070	7.0	00	00/100	2.5	1.0	4.0	4.0	115	0 444 400
2N5874	2N5872	7.0	80	20/100	2.5	1.0	4.0	4.0	115	6-111,108
FT410		7.5	200	30/90	1.0	0.8	1.0	_	100 100	6-210
FT411		7.5	300	30/90	1.0	1			i e	6-212
FT413		7.5	325	20/80	0.5	0.8	0.5 1.0	-	100 100	6-214
FT423		7.5	325	30/90	1.0	0.8	1.0	-	100	6-214
2N5877	2N5875	8.0	60	20/100	4.0	1.0	5.0	4.0	150	6-117,114
2N6055	2N6053	8.0	60	750/18K	4.0	2.0	4.0	4.0	100	6-140,137
2N5878	2N5876	8.0	80	20/100	4.0	1.0	5.0	4.0	150	6-117,114
2N6056	2N6054	8.0	80	750/18K	4.0	2.0	4.0	4.0	100	6-140,137
2N6306		8.0	250	15/75	3.0	0.8	3.0	5.0	125	6-137
2N6307M		8.0	300	15/75	3.0	1.0	3.0	5.0	125	6-167
2N6308M		8.0	350	12/60	3.0	1.5	3.0	5.0	125	6-167
	2N4907	10	40	20/80	4.0	0.75	4.0	4.0	150	6-52
2N6383		10	40	1K/20K	5.0	2.0	5.0	20	100	6-170
	2N3789	10	60	25/90	1.0	1.0	5.0	4.0	150	6-25
2N3713		10	60	25 / 75	1.0	1.0	5.0	4.0	150	6-13
2113/13	2014000	1	1	25/75	4.0	0.75	4.0	4.0	150	6-52
2N3715	2N4908	10	60	20/80		1		2.5	150	
ZN3/15	2012701	10	60	50/150	1.0	0.8	5.0	1 .	150	6-13
2016204	2N3791	10	60	50/180	1.0	1.0	5.0	4.0	100	6-25 6-170
2N6384		10	60	1K/20K	5.0	2.0	5.0	20	100	0-170

	VICE	lc.	VCEO	hFE		VCE		fT	PD(Max)	DATA
NPN	ARITY PNP	Max	Max	Min/Max	@ IC	Max @	O IC	Min	T _C =25°C	SHEET PAGE NO
TO-3 Packa	lage			A COMMON		10000000	terit i	I de la	1	
	2112722	T	T	T		T		T.,	T	
CE0204	2N3792	10	80	50/180	1.0	1.0	5.0	4.0	150	6-25
SE9304 2N6385	SE9404	10	80 80	1K/- 1K/20K	4.0	2.0	4.0	1.0	100	6-237,243
SE9305	SE9405	10	100	1K/2UK	5.0 4.0	2.0	5.0 4.0	1.0	100	6-170 6-237,243
2N6249	313405	10	200	10/50	10	1.5	10	2.5	100	6-158
2N6250		10	275	8/50	10	1.5	10	2.5	100	6-158
T431		10	325	15/35	2.5	0.7	2.5	-	125	6-218
2N6251		10	350	6/50	10	1.5	10	2.5	100	6-158
FT359		10	350	250/-	3.0	2.8	7.0	-	125	6-208
FT430	ar ya Yasa tuni	10	300	15/45	2.5	0.9	2.5		125	6-218
2N6569		12	40	15/200	4.0	1.5	4.0	1.5	100	6-184
2N5881	2N5879	12	60	20/100	6.0	1.0	7.0	4:0	160	6-123,120
2N6057	2N6050	12	60	750/18K	6.0	2.0	6.0	4.0	150	6-134,143
2N5882	2N5880	12	80	20/100	6.0	1.0	7.0	4.0	160	6-123,120
2N6058	2N6051	12	80	750/18K	6.0	2.0	6.0	4.0	150	6-143,134
2N6059	2N6052	12	100	750/18K	6.0	2.0	6.0	4.0	150	6-143,134
2N3055		15	60	20/70	4.0	1.1	4.0		117	6-6
2N3055SD		15	60	20/70	4.0	1.1	4.0	0.8	115	6-8
2N6576 2N6577		15	60	2K/20K	4.0	4.0	15	10	120	6-186
2N05//	-	15	90	2K/20K	4.0	4.0	15	10	120	6-186
	2N6029	16	100	25/100	8.0	2.0	16	1.0	200	6-132
2N5629		16	100	25/100	8.0	1.0	10	0.5	200	6-90
	2N6030	16	120	20/80	8.0	2.0	16	1.0	200	6-132
2N5630		16	120	20/80	8.0	1.0	10	0.5	200	6-90
	2N6031	16	140	15/60	8.0	2.0	16	1.0	200	6-132
2N5631		16	140	15/60	8.0	1.0	10	0.5	200	6-90
2N3772		20	60	15/60	10	1.4	10	0.2	150	6-22
2N5885	2N5883	20	60	20/100	10	1.0	15	4.0	200	6-129,126
2N6282	2N6285	20	60	750/18K	10	2.0	10	4.0	160	6-161,164
2N5039		20	75	20/100	10	1.0	10	60	140	6-60
2N5886	2N5884	20	80	20/100	10	1.0	15	4.0	200	6-129,126
2N6283	2N6286	20	80	750/18K	10	2.0	10	4.0	160	6-161,164
2N5303		20	80	15/60	10	2.0	20	2.0	200	6-69
2N5038	200007	20	90	20/100	12	1.0	12	60	140	6-60
2N6284	2N6287	20	100	750/18K	10	2.0	10	4.0	160	6-161,164
	2N4398	30	40	15/60	15	1.0	15	4.0	200	6-37
2012774	2N4399	30	60	15/60	15	1.0	15	4.0	200	6-37
2N3771 2N5301		30	40 40	15/60 15/60	15	2.0	15 20	0.2	150	6-22
2N5301 2N5302		30	60	15/60	15 15	2.0	20 20	2.0	200 200	6-69 6-69
MJ802	MJ4502	30	90	25/100	7.5	0.8	7.5	2.0	200	6 224 226
2N5685	2N5683	50	60	15/60	25	1.0	25	2.0	300	6-224,226 6-98,101
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2N5684	50	80	15/60	25	1.0	25	2.0	300	6-98,101

DARLINGTON SELECTION GUIDE BY IC(max) AND VCEO(max)

	VICE ARITY	V _{CEO} Max	h _{FE} Min/Max	at I _C	V _{CE}		f _T Min	PD(Max) TC=25°C	PACK- AGE	DATA SHEET
NPN	PNP	v		Α	V	Α	MHz	w	T. T.	PAGE NO
I _C = 2.0 A N	fax Continuous									
TIP110	TIP115	60	1K/-	1.0	2.5	2.0	-	50	TO-220	6-265
TIP111	TIP116	80	1K/-	1.0	2.5	2.0	-	50	TO-220	6-265
TIP112	TIP117	100	1K/-	1.0	2.5	2.0	-	50	TO-220	6-265
I _C = 5.0 A N	Max Continuous									
TIP120	TIP125	60	1K/-	0.5	2.0	3.0	-	65	TO-220	6-267,271
TIP121	TIP126	80	1K/-	0.5	2.0	3.0		65	TO-220	6-269,271
TIP122	TIP127	100	1K/-	0.5	2.0	3.0		65	TO-220	6-269,271
I _C = 8.0 A N	Max Continuous		-							
2N6055	2N6053	60	750/18K	4.0	2.0	4.0	4.0	100	TO-3	6-140,137
2N6056	2N6054	80	750/18K	4.0	2.0	4.0	4.0	100	TO-3	6-140,137
I _C = 10.0 A	Max Continuous									
2N6386		40	1K/20K	3.0	2.0	3.0	20	40	TO-220	6-173
2N6383		40	1K/20K	5.0	2.0	5.0	20	100	TO-3	6-170
2N6387		60	1K/20K	3.0	2.0	3.0	20	40	TO-220	6-173
SE9300	SE9400	60	1K/-	4.0	2.0	4.0	1.0	70	TO220	6-235,241
SE9303	SE9403	60	1K/-	4.0	2.0	4.0	1.0	100	TO-3	6-237,243
2N6384		60	1K/20K	5.0	2.0	5.0	20	100	TO-3	6-170
2N6388		80	1K/20K	3.0	2.0	3.0	20	40	TO-220	6-173
SE9304	SE9404	80	1K/-	4.0	2.0	4.0	1.0	100	TO-3	6-237,243
SE9301	SE9401	80	1K/-	4.0	2.0	4.0	1.0	70	TO-220	6-235,241
2N6385		80	1K/20K	5.0	2.0	5.0	20	100	TO-3	6-170
SE9302	SE9402	100	1K/-	4.0	2.0	4.0	1.0	70	TO-220	6-235,241
SE9305	SE9405	100	1K/-	4.0	2.0	4.0	1.0	100	TO-3	6-237,243
FT359		350	250/-	3.0	2.5	7.0	-	125	TO-3	6-208
I _C = 12 A N	lax Continuous									
2N6057	2N6050	60	750/18K	6.0	2.0	6.0	4.0	150	TO-3	6-143,134
2N6058 2N6059	2N6051 2N6052	100	750/18K 750/18K	6.0 6.0	2.0 2.0	6.0 6.0	4.0 4.0	150 150	TO-3 TO-3	6-143,134 6-143,134
I _C = 15 A M	lax Continuous				L			L	1	
2N6576		60 .	2K/20K	4.0	4.0	15	10	120	TO-3	6-186
2N6577		90	2K/20K	4.0	4.0	15	10	120	TO-3	6-186
I _C = 20 A N	lax Continuous									
2N6282	2N6285	60	750/18K	10	2.0	10	4.0	160	TO-3	6-161,164
2N6283	2N6286	80	750/18K	10	2.0	10	4.0	160	TO-3	6-161,164
2N6284	2N6287	100	750/18K	10	2.0	10	4.0	160	TO-3	6-161,164

Industry	Fairchild	Industry	Fairchild	Industry	Fairchild	Industry	Fairchil
Type	Nearest	Type	Nearest	Type	Nearest	Type	Neares
Number	Standard	Number	Standard	Number	Standard	Number	Standar
2N2987	2N5335	2N3676	2N4239	2N4239	2N4239	2N5034	2N3055
2N2988	2N5681	2N3713	2N3713	2111200	2111200	2110004	2N5877
2N2989	2N5681	2N3713	2N3713	2N4240	SE9331	2015025	
				2N4271	2N5682	2N5035	2N3055
2N2990	2N5681	2N3715	2N3715	2N4272	2N5682		2N5877
2N3016	2N5337	2N3716	2N3716	2N4296	SE9331	2N5036	2N3055
2N3021	2N4901	2012710	2014224				2N5877
		2N3719	2N4234	2N4300	2N5336		
2N3023	2N4902	2N3720	2N4235	2N4305	2N5337	2N5038	2N5038
2N3024	2N4904	2N3738	2N5838	2N4307	2N5337	2N5039	2N5039
2N3026	2N4905	2N3739	FT402			2N5052	SE9331
2N3054	2N3054	2N3740	2N3740	2N4309	2N5337	2N5058	2N5058
		2.107.10	2.107.10	2N4311	2N5337	2N5059	
2N3055	2N3055	2N3741	2N3741	2N4314	2N5322	2100009	2N5059
2N3171	2N3789	2N3766	2N3766			2N5067	2N5067
2N3172	2N3789	2N3767	2N3767	2N4348	2N5630		
2N3173	2N3790			2N4387	2N4898	2N5068	2N5068
		2N3771	2N3771	2N4388	2N4899	2N5069	2N5069
2N3174	2N3790	2N3772	2N3772	2N4395	2N5337	2N5073	2N5682
2N3183	2N3789	2012772	2N5631			2N5110	2N4234
	2N3789	2N3773		2N4396	2N5337		
2N3184		2N3774	2N4234	2N4398	2N4398	2N5111	2N4236
2N3185	2N3790	2N3775	2N4235			2N5112	2N4234
2N3186	2N3790	2N3776	2N4236	2N4399	2N4399	2N5113	2N4236
2N3195	2N3789	2N3777	2N5679	2N4438	2N3439	2N5148	2N5336
				2N4439	2N3439	2N5150	2N5336
2N3196	2N3789	2N3778	2N4234	2N4862	2N5339	2115150	2110000
2N3197	2N3790	2N3779	2N4235			2N5152	2N5337
2N3198	2N3790	2N3780	2N4236	2N4863	2N5682	2N5154	2N5337
2N3202	2N4234	2N3781	2N5679	2N4877	2N4239	2N5157	
2N3203	2N4235	1		2N4895	2N5336		FT423
2113203	2114233	2N3782	2N4234	2N4896	2N5337	2N5190	2N6121
2N3204	2N4236	2N3789	2N3789	2N4897		2N5191	2N6122
2N3208	2N4234	1		2114897	2N5338		
		2N3790	2N3790	2N4898	2N4898	2N5192	2N6123
2N3226	2N4913/	2N3791	2N3791			2N5193	2N6124
	2N3717	2N3792	2N3792	2N4899	2N4899	2N5194	2N6125
2N3232	2N5877	2N3863	2N3716	2N4900	2N4900	2N5195	2N6126
2N3235	2N3055	1		2N4901	2N4901	2N5202	2N5874
20.200		2N3878	2N5873	2N4902	2N4902	2110202	2110074
2N3237	2N5302	2N3879	2N5874			2N5205	2N3054
2N3238	2N5882	2N3902	FT402	2N4903	2N4903	2N5237	2N5237
2N3239	2N5882	2N3928	2N5337	2N4904	2N4904	2N5239	2N6250
2N3240	2N5631	2N4000	2N5336	2N4905	2N4905	2N5240	
2N3418	2N5334	2114000	2110000	2N4906	2N4906	I	FT411
2110410	2110334	2N4001	2N5681/	2N4907	2N3791	2N5279	2N3439
2N3419	2N5335		2N5339	Z114307	2113/31	2N5293	BD220
2N3420	2N3536	2N4037	2N5339 2N5323	2N4908	2N3791/		
2N3420 2N3421		1			2N5875	2N5294	BD220
	2N5336	2N4063	2N3439	28/4000		2N5295	BD221
2N3439	2N3439	2N4064	2N3440	2N4909	2N3790/	2N5296	BD221
2N3440	2N3440	2014070	ONE 004		2N5876	2N5297	BD222
2N3442	2NEC24	2N4070	2N5631	2N4910	2N4910		
	2N5631	2N4071	2N5631	2N4911	2N4911	2N5298	BD222
2N3445	2N5877	2N4111	2N5877/	2N4912	2N4912	2N5301	2N5301
2N3446	2N5878	1.5	2N3715			2N5302	2N5302
2N3447	2N5877	2N4112	2N5877	2N4913	2N4913	2N5303	2N5303
2N3448	2N5878	2N4113	2N5877/	2N4914	2N4914	1	
	2.10070	2144113		2N4915	2N4915	2N5320	2N5320
2N3469	2N5337	1	2N3716	2N4918	TIP30	2N5321	2N5321
2N3506	2N5337	2N4150	2N5337			2N5322	2N5322
2N3507	2N5336			2N4919	TIP30A		
		2N4231	2N4231	2014020	TIDOOD	2N5323	2N5323
2N3583	SE9331	2N4232	2N4232	2N4920	TIP30B	2N5324	2N5324
2N3589	SE9331	2N4233	2N4233	2N4921	TIP29	2N5325	2N5324
2112624	CTC 445	2N4234	2N4234	2N4922	TIP29A		22.
2N3634	FT5415			2N4923	TIP29B	2N5336	2N5336
2N3636	FT5416	2N4235	2N4235	2N4929	2N5415	2N5337	2N5337
2N3660	2N4234	2N4236	2N4236	2117323	2140-10	2N5338	2N5338
2N3661	2N4235	2N4237	2N4237	2N4930	2N5415	2N5339	2N5339
2N3675	2N4238	2N4238	2N4237 2N4238	2N4931			
	4114430	1 4144430	Z1V4Z30	_ ∠IV4331	2N5415	2N5415	2N5415


Industry	Fairchild	Industry	Fairchild	Industry	Fairchild	Industry	Fairchild
Type	Nearest	Type	Nearest	Type	Nearest	Type	Nearest
Number	Standard	Number	Standard	Number	Standard	Number	Standard
1		1		1		1	2N6129
2N5416	2N5416	2N5839	2N5839	2N6053	2N6053	2N6289	
2N5490	2N6121	2N5840	2N5840	2N6054	2N6054	· 2N6290	2N6130
2N5491	2N6121	2N5867	2N4905	2N6055	2N6055	2N6291	2N6130
2N5492	2N6130	2N5868	2N4906	2N6056	2N6056	2N6292	2N6131
		1					2N6131
2N5493	2N6130	2N5869	2N4914	2N6057	2N6057	2N6293	2110131
2N5494	2N6131	2N5870	2N4915	2N6058	2N6058	2N6300	SE9303
3				1		1	
2N5495	2N6121	2N5871	2N5871	2N6059	2N6059	2N6301	SE9304
2N5496	2N6131	2N5872	2N5872	2N6098	FT3055	2N6303	2N4234
2N5497	2N6131	2N5873	2N5873	2N6099	FT3055	2N6306	2N6306
2N5498	2N5498	2N5874	2N5874	2N6106	2N6134	2N6307	2N6307
2110100	2110-100	2110074	211007 1	2.10.00	2110101	1 2,10007	2110007
2N5622	2N5881	2N5875	2N5875	2N6107	2N6134	2N6308	2N6308
2N5623	2N5880	2N5876	2N5876	2N6108	2N6133	2N6309	TIP30A
1		1		1		i ·	and the second s
2N5624	2N5878	2N5877	2N5877	2N6109	2N6133	2N6315	2N5873
2N5625	2N5880	2N5878	2N5878	2N6110	2N6132	2N6316	2N5874
2N5626	2N5882	2N5879	2N5879	2N6111	2N6111	2N6317	2N5871
	_,,,,,,,						
2N5629	2N5629	2N5880	2N5880	2N6121	2N6121	2N6318	2N5872
2N5630	2N5630	2N5881	2N5881	2N6122	2N6122	2N6326	2N5302
2N5631	2N5631	•		2N6123	2N6123	l .	
		2N5882	2N5882	1		2N6327	2N5806
2N5632	2N5632	2N5883	2N5883	2N6124	2N6124	2N6329	2N4399
2N5633	2N5630	2N5884	2N5884	2N6125	2N6125	2N6330	2N3792
				200000	0110400	}	
2N5634	2N5631	2N5885	2N5885	2N6126	2N6126	2N6354	2N5630
2N5636	2N5681	2N5886	2N5886	2N6129	2N6129	2N6359	2N5886
2N5655	FT47	2N5970	2N5302	2N6130	2N6130	2N6383	2N6383
2N5656	FT48			2N6131	2N6131	i	
		2N5971	2N5302	I .		2N6384	2N6384
2N5657	FT49	2N5972	2N5302	2N6132	2N6132	2N6385	2N6385
2N5660	CE0221			2016122	2016122		
	SE9331	2N5973	2N3714	2N6133	2N6133	2N6386	2N6386
2N5661	SE9331	2N5974	TIP32	2N6134	2N6134	2N6387	2N6387
2N5671	MJ802	2N5975	TIP32A	2N6175	FT47	2N6388	2N6388
2N5675	2N5679			2N6176	FT48	1	
2N5679	2N5679	2N5976	TIP32B	2N6177	FT49	2N6410	BD221
2113073	2113079	2N5977	TIP31	2110177	1143	2N6411	BD224
2N5680	2N5680	1		2N6230	2N6030	l	
1		2N5978	TIP31A	2N6231	2N6031	2N6412	BD221
2N5681	2N5681	2N5979	TIP31B			2N6413	BD222
2N5682	2N5682	2N5980	2N6132	2N6233	SE9331	2N6414	BD224
2N5683	2N5683			2N6234	2N6234	2N6415	BD225
2N5684	2N5684	2N5981	2N6133	2N6246	2N5879	ř .	
		2N5982	2N6134			2N6416	TIP29B
2N5685	2N5685			2N6247	2N5880		TIDOOD
2N5686	2N5686	2N5983	2N6129	2N6248	2N6020	2N6418	TIP30B
	2N5303	2N5984	2N6130	2N6249	2N6249	2N6470	2N6569
2N5732		2N5985	2N6131	1	2N6250	2N6471	2N3055
2N5734	2N5886	2N5986	FT2955	2N6250		2N6472	2N5882
2N5737	2N5875/	1		2N6251	2N6251	2N6486	2N6486
l	2N5879	2N5987	FT2955	2010252	2NE002	2110480	2110400
1		2NE000	ETONEE	2N6253	2N5882	2N6487	2N6487
2N5738	2N3792	2N5989	FT3055	2N6254	2N5882	· ·	
2N5471	2N5883	2N5990	FT3055	2N6257	2N5301	2N6488	2N6488
2N5742	2N6029	2N6029	2N6029	2N6258	2N5886	2N6489	2N6489
ı		2N6030	2N6030	1		2N6490	2N6490
2N5743	2N5883	2N6031	2N6031	2N6259	2N5631	2N6491	2N6491
2N5744	2N5884	2110031	2110031	2N6260	2N4231	2110431	Z110431
2NE745	2NE004	2N6040	SE9400			2N6496	2N5630
2N5745	2N5884			2N6261	2N3767/		
2N5781	2N4236	2N6O41	SE9401		2N4233	2N6542	FT411
2N5782	2N4235	2N6042	SE9402	2N6262	FT410	2N6544	2N6251
2N5783	2N4234	2N6043	SE9300	2N6282	2N6282	2N6545	2N6251
2N5784		2N6044	SE9301	1	2N6283	2N6569	2N6569
21NO/84	2N4239	2140044	363301	2N6283	2110283	2110303	2140000
2N5785	2N4238	2N6045	SE9302	2N6284	2N6284	2N6576	2N6576
l .				4		L .	
2N5786	2N4237	2N6O49	2N4899	2N6285	2N6285	2N6577	2N6577
2N5804	FT411	2N6050	2N6050	2N6286	2N6286	2N6578	2N6578
2N5805	FT411	2N6051	2N6051	2N6287	2N6287	40250	2N4913
2N5838	2N5838	2N6052	2N6052	2N6288	2N6129	40251	2N6569
2,,,,,,,,,	2,10000	. 2110002	2110002	. 2.10200	2,10120		2110000
L							

In disease.	Fallant III	I	Patriculation	1 1	C-:		F-:
Industry	Fairchild	Industry	Fairchild	Industry	Fairchild	Industry	Fairchild
Type	Nearest	Type	Nearest	Type	Nearest	Type	Nearest
Number	Standard	Number	Standard	Number	Standard	Number	Standard
40309	2N5321	40885	FT47	BD205	2N6569	BD700	SE9401
40310	2N3054	40886	FT48	BD207	FT3055	BD700A	SE9401
40311	2N5321	40887	FT49	BD208	FT2955	BDX10	2N3055
40312	2N3054	40910	2N4231	BD213/60	FT3055	BDX11	2N5631
1				1			
40313	SE9331	40911	2N5233	BD214/60	FT2955	BDX13	2N6569
40314	2N5321	41500	TIP31	BD233	TIP29	BDX23	2N5629
						.1	
40315	2N5321	41501	TIP32	BD234	TIP30	BDX24	2N4913
40316	2N3054	41502	2N4237	BD235	TIP29A	BDX40	2N3772
40317	2N5321	41503	2N4234	BD236	TIP30A	BDX50	2N5631
40318	SE9331	41504	BD224	BD237	TIP29B	BDX51	2N5630
,,,,,		11001	BBLL	55207		DD/G.	2.10000
40319	2N5323	41505	FT47	BD238	TIP30B	BDX60	2N5629
40320	2N5321	41506	2N5838	BD260	FT401	BDX61	2N5886
		The second secon		1			
40321	2N3440	43104	2N5631	BD261	FT411	BDX70	FT3055
40322	SE9331	BD111A	2N3715	BD283	BD221	BDX71	FT3055
40323	2N5321	BD117	2N3713	BD284	BD224	BU100A	2N5629
				1			
40324	2N3054	BD124	2N3054	BD285	2N6121	BU102	2N5631
40325	2N6569	BD127	FT48	BD286	2N6124	BU120	2N6249
40326	2N5321	BD128	FT49	BD311	2N5881	BU125	2N4895
		1					
40327	2N3440	BD129	FT50	BD312	2N5879	BU127	2N5630
40328	SE9331	BD135	TIP29	BD313	2N5882	BU128	2N6249
40040	0110440	DD100	TIDOO	DD014	2115000	DUNG 4	0115000
40346	2N3440	BD136	TIP30	BD314	2N5880	BUY24	2N5068
40347	2N5321	BD137	TIP29A	BD315	2N5882	BUY38	2N3054
40348	2N4238	BD138	TIP30A	BD316	2N5880	BUY46	2N3054
40360	2N5320	BD139	TIP29B	BD317	2N5629	BUY68	2N4895/96
40361	2N5320	BD140	TIP30B	BD318	2N6020	B133000	BD221
40362	2N5322	BD141	2N5631	BD361	TIP29	D122001	DD221
		1		1		B133001	BD221
40363	2N3055	BD142	2N6569	BD361A	TIP29	B133002	BD221
40366	2N5320	BD157	FT47	BD362	TIP30	B133003	2N6122
40367	2N4238	BD158	FT48	BD362A	TIP30	B133004	2N6122
t .		•		1			
40369	2N5873	BD159	FT49	BD561	2N2161	B133005	2N6122
40372	2N3054	BD163	2N5054	BD562	2N2164	B133006	2N6123
40375	2N5873	BD165	TIP29		TIP29	B133007	2N6123
1		1		BD575			
40385	2N3439	BD166	TIP30	BD576	TIP30	B133008	2N6123
40390	2N3440	BD167	TIP29A	BD577	TIP29A	B170000	2N6569
40391	2N5323	BD168	TIP30A	BD578	TIP30A	B170001	2N6569
				320.0			
40394	2N5323	BD169	TIP29B	BD579	TIP29B	B170002	2N6569
40411	MJ802	BD170	TIP30B	BD580	TIP30B	B170003	2N5882
40412	2N3440	BD175	2N6121	BD585	2N6121	B170004	2N5882
		1)		1	
40594	2N5338	BD176	2N6124	BD586	2N6124	B170005	2N5882
40613	TIP29	BD177	TIP29A	BD587	2N6122	B170006	2N5629
40040	DD004	00170	TIDOOA	DDF00	2016125	D170007	205020
40618	BD221	BD178	TIP30A	BD588	2N6125	B170007	2N5629
40621	BD221	BD179	TIP29B	BD589	2N6123	B170008	2N5629
40622	BD221	BD180	TIP30B	BD590	2N6126	B170009	2N6569
40624	2N6129	BD185	BD221	BD595	2N6129	B170010	2N6569
1		1		1		1	
40626	2N5629	BD186	BD224	BD596	2N6132	B170011	2N6569
40627	2N6130	BD187	2N6121	BD597	2N6130	B170012	2N5882
40629	2N6122	BD188	2N6124	BD598	2N6133	B170012	2N5882
1		1		-1		B .	
40630	2N6122	BD189	BD222	BD599	2N6131	B170014	2N5882
40631	2N6122	BD190	BD225	BD600	2N6134	B170015	2N5629
40632	2N6131	BD195	2N6129	BD607	FT3055	B170016	2N5629
40636	2N5630	BD196	2N6132	BD608	FT2955	B170017	2N5629
40850	FT401	BD197	2N6129	BD697	SE9300	B170018	2N6569
40851	2N6251	BD198	2N6132	BD697A	SE9300	B170019	2N6569
1		1					
40852	2N6251	BD199	2N6130	BD699	SE9301	B170020	2N6569
40853	FT430	l BD200	2N6133	BD699A	SE9301	B170021	2N5882

Industry Type	Fairchild Nearest	Industry Type	Fairchild Nearest	Industry Type	Fairchild Nearest	Industry Type	Fairchild Nearest
Number	Standard	Number	Standard	Number	Standard	Number	Standard
B170022	2N5882	D44H11	2N6131	MJE225	BD222	MJE3371	BD224
B170023	2N5882	D45C1	BD224	MJE230	BD221	MJE3439	FT49
B170024	2N5629	D45C2	BD224	MJE231	BD221	MJE3440	FT47
B170025	2N5629	D45C3	BD224	MJE232	BD221	MJE3520	TIP29
B170026	2N5629	D45C4	2N6124	MJE233	BD222	MJE3521	BD221
B176000	FT410	D45C5	2N6124	MJE234	BD222	MJE3738	FT43
B176001	FT410	D45C6	2N6124	MJE235	BD222	MJE3839	FT48
B176002	FT410	D45C7	2N6125	MJE340	FT48	MJE4918	TIP30
B176003	FT410	D45C8	2N6125	MJE340K	FT48	MJE4919	TIP30A
B176004	FT413	D45C9	2N6125	MJE344	FT47	MJE4920	TIP30B
B176005	FT413	D45C10	2N6126	MJE344K	FT47	MJE4921 MJE4922	TIP29 TIP29A
B176006	FT423	D45C11	2N6126	MJE350	FT48	MJE4923	TIP29B
B176007	FT423	D45C12	2N6126	MJE370	TIP30	MJE5190	BD221
B176024	FT423	D45E1	SE9400	MJE370K	TIP30	MJE5191	BD221/
B176025	FT423	D45E2	SE9400	MJE371	BD224	WISESTST	2N6122
DTS401	FT401	D45E3	SE9401	MJE371K	BD224	MJE5192	2N6123
DTS402	FT402	D45H1	2N6132	MJE520	TIP29	MJE5193	BD224
DTS403	FT402	D45H2	2N6132	MJE520K	TIP29	MJE5194	BD225/
DTS409	FT402	D45H4	2N6132	MJE521	BD221		2N6125
DTS410	FT410	D45H5	2N6132	MJE521K	BD221	MJE5195	2N6126
DTS411	FT411	D45H7	2N6133	MJE710	TIP30	MJE5655	FT47
DTS413	FT413	D45H8	2N6133	MJE711	TIP30A	MJE5656	FT48
DTS423	FT423	D45H9	2N6133	MJE712	TIP30B	MJE5657	FT49
DTS424	2N6251	D45H10	2N6134	MJE720	TIP29	MJE5974	TIP32
DTS430	FT430	D45H11	2N6134	MJE721	TIP29A	MJE5975	TIP32A
DTC421		DAELITA	2N6134	NA 15722	TIDOOD	MJE5976	TIP32B
DTS431 DTS515	FT431 2N6250	D45H12 MJE29	TIP29	MJE722 MJE1103	TIP29B CASE TG	MJE5977	TIP31
DTS516	2N6250	MJE29A	TIP29A	MJE1291	FT2955	MJE5978	TIP31A
DTS517	2N6250	MJE29B/C	TIP29B/C	MJE1661	FT3055	MJE5979	TIP31B
DTS519	FT430	MJE30	TIP30	MJE2010	TIP32	MJE5980	2N6132
	-					MJE5981	2N6133
DTS1010	SE9304	MJE30A	TIP30A	MJE2011	TIP32A	MJE5982	2N6134
DTS1020	SE9304	MJE30B/C	TIP30B/C	MJE2020	TIP31	MJE5983	2N6129
DTS4010	FT430	MJE31	TIP31	MJE2021	TIP31A	MJE5984	2N6123
D44C1	BD221	MJE31A	TIP31A	MJE2050	2N6121	MJE5985	2N6130
D44C2	BD221	MJE31B/C	TIP31B/C	MJE2150	TIP32	MJE6040	SE9300
D44C3	BD221 2N6121	MJE32 MJE32A	TIP32 TIP32A	MJE2360 MJE2361	FT49 FT49	MJE6041	SE9301
D44C4 D44C5	2N6121	MJE32B/C	TIP32B/C	MJE2370	TIP30	MJE6042	SE9302
D44C6	2N6121	MJE105	TIP32B/C	MJE2480	BD221	MJE6043	SE9300
D44C0 D44C7	2N6121 2N6122	MJE105K	TIP32A	MJE2480	BD221	MJE6044	SE9301
				l		MJE6045	SE9302
D44C8	2N6122	MJE170	TIP30	MJE2482	BD221	MJ400	2N5338
D44C9	2N6122	MJE171	TIP30A	MJE2483	BD222	MJ410	FT410
D44C10	2N6123	MJE172	TIP30B	MJE2490	BD224	MJ411	FT411
D44C11	2N6123	MJE180	TIP29	MJE2491	BD225	MJ413	FT413
D44C12	2N6123	MJE181	TIP29A	MJE2520	TIP29	MJ420	2N5059
D44E1	SE9300	MJE182	TIP29B	MJE2801	FT3055	MJ421	2N3439
D44E2	SE9300	MJE200	TIP31	MJE2801K	FT3055	MJ423	FT423
D44E3	SE9301	MJE205	TIP31A	MJE2901	FT2955	MJ424	2N6251
D44H1 D44H2	2N6129 2N6129	MJE205K MJE210	TIP31A TIP32	MJE2901K MJE2955	FT2955 FT2955	MJ430 MJ431	FT430 FT431
D44H4 D44H5	2N6129 2N6129	MJE220 MJE221	BD221 BD221	MJE2955K MJE3055	FT2955 FT3055	MJ450 MJ480	2N4398 2N5067
D44H7	2N6129 2N6130	MJE222	BD221 BD221	MJE3055F	MJE3055F	MJ481	2N5067 2N5068
D44H8	2N6130	MJE223	BD221 BD222	MJE3055K	FT3055	MJ490	2N3008 2N4901
D44H10	2N6131	MJE224	BD222	MJE3370	TIP30	MJ490	2N4901 2N4902
	~140101	. 11106224	JUELL	. 141323370	111 30 1	1410-491	2147302

Industry Fairchild Industry Fairchild Industry Fairchild Industry Fairchild Industry Fairchild Industry Fairchild Industry Type Nearest Type Nearest Type Number Standard Number Standard Number Standard Number SDT3551 2N4236 SDT9706 MJ900 SE9403 RCA1A16 FT5416 SDT3552 2N4234 SDT9707 MJ901 SE9403 RCA1A19 2N5322 SDT3553 2N4235 SDT9801	Fairchild Nearest Standard 2N5630 2N5887 2N6569
MJ802 MJ802 RCA1A15 2N3440 SDT3551 2N4236 SDT9706 MJ900 SE9403 RCA1A16 FT5416 SDT3552 2N4234 SDT9707	2N5630 2N5887
MJ900 SE9403 RCA1A16 FT5416 SDT3552 2N4234 SDT9707	2N5887
MJ901 SE9403 RCA1A19 2N5322 SDT3553 2N4235 SDT9801	2N6569
MJ1000 SE9303 RCA1B01 2N5629 SDT3554 2N4236 SDT9802	2N3055
MJ1001 SE9304 RCA1B04 FT410 SDT3575 2N4898 SDT9803	2N5878
MJ1800 2N6250 RCA1B05 2N6250 SDT3576 2N4899 SDT9901	2N6569
2N2249 2N3766 RCA1B06 FT410 SDT3577 2N4900 SDT9902	2N3055
2N2250 2N3767 RCA1B07 SE9305 SDT3578 2N4898 SDT9903	2N5878
MJ2253 2N3766 RCA1C05 2N6133 SDT3579 2N4899 TIP29	TIP29
MJ2254 2N3767 RCA1C06 2N6130 SDT3750 2N4904 TIP29A	TIP29A
MJ2268 2N5879 RCA1CO7 2N6131 SDT3751 2N4905 TIP29B/C	TIP29B/C
MJ2500 SE9403 RCA1C08 2N6134 SDT3752 2N4901 TIP30	TIP30
MJ2801 2N6569 RCA1C09 FT3055 SDT3753 2N4902 TIP30A	TIP30A
MJ2840 2N5881 RCA1C10 2N6129 SDT3754 2N4903 TIP30B/C	TIP30B/C
MJ2841 2N5882 RCA1C11 2N6132 SDT3756 2N4904 TIP31	TIP31
MJ2862 2N3791 RCA1C14 2N6130 SDT3757 2N4904 TIP31A	TIP31A
MJ2940 2N5879 RCA29 TIP29 SDT3758 2N4905 TIP31B/C	TIP31B/C
MJ2941 2N5880 RCA29A TIP29A SDT3759 2N4906 TIP32	TIP32
MJ2955 FT2955 RCA29B/C TIP29B/C SDT3761 2N4904 TIP32A	TIP32A
MJ3000 SE9303 RCA30 TIP30 SDT3762 2N4904 TIP32B/C	TIP32B/C
MJ3001 SE9304 RCA30A TIP30A SDT3763 2N4905 TIP33A	2N3715
MJ3026 2N5839 RCA30B/C TIP30B/C SDT3764 2N4906 TIP33B	2N3716
	2N5629
MJ3028 FT402 RCA31A TIP31A SDT3826 2N5880 TIP34A	2N3791
MJ3029 FT411 RCA31B/C TIP31B/C SDT3875 2N4398 TIP34B	2N3792
MJ3030 FT413 RCA32 TIP32 SDT3876 2N5884 TIP34C	2N6020
MJ3201 SE9331	2N5301
MJ3202 SE9331 RCA32B/C TIP32B/C SDT4301 2N4237 TIP35A	2N5302
MJ326U 2N6250 RCA41 TIP41 SDT4302 2N4238 TIP35B	2N5303
MJ3430 FT411 RCA41A TIP41A SDT4303 2N4239 TIP36	2N4398
MJ3701 2N4231 RCA41B/C TIP41B/C SDT4304 2N5321 TIP36A	2N4399
MJ3771 2N3771 RCA42 TIP42 SDT4305 2N5334 TIP36B	MJ4502
MJ3772 2N3772 RCA42A TIP42A SDT4306 2N5335 TIP41	TIP41
MJ3773 2N5630 RCA42B/C TIP42B/C SDT4307 2N5321 TIP41A	TIP41A
MJ4052 MJ4502 RCA120 TIP120 SDT4308 2N5334 TIP41B/C	TIP41B/C
MJ4545 FT5415 RCA121 TIP121 SDT4309 2N5335 TIP42	TIP42
	TIP42A
MJ4647 FT5416 RCA410 FT410 SDT4312 2N5335 TIP42B/C	TIP42B/C
MJ4648 FT5416 RCA411 FT411 SDT7732 2N5881 TIP47	FT47
MJ5038 2N5038 RCA413 FT413 SDT7733 2N5882 TIP48	FT48
MJ6257 2N3771 RCA423 FT423 SDT7734 2N5629 TIP49	FT49
MJ6302 2N5631	FT50
MJ7160 FT430 RCA1000 SE9303 SDT9202 2N5882 TIP51	2N5838
MJ8100 2N4895 RCA1001 SE9304 SDT9203 2N5629 TIP52	FT401
MJ8101 2N4897 RCA3054 BD225 SDT9204 2N5630 TIP53	2N5840
RCA1A01 2N5320 RCA3055 FT3055 SDT9205 2N6569 TIP61	TIP61
RCA1A02 2N5322 RCA8203A SE9400 SDT9206 2N3055 TIP61A	TIP61A
RCA1A03 2N5338 RCA8203B SE9401 SDT9207 2N5882 TIP61B	TIP61B
RCA1A05 2N5322 SDT1050 FT410 SDT9208 2N5629 TIP61C	TIP61C
RCA1A06 2N5320 SDT1051 FT413 SDT9209 2N5630 TIP62	TIP62
RCA1A07 2N5321 SDT1055 2N5838 SDT9701 2N5303 TIP62A	TIP62A
	TIP62B
RCA1A09 2N3439 SDT1060 2N5838 SDT9703 2N5630 TIP62C	TIP62C
RCA1A10 FT5416 SDT1061 FT431 SDT9704 2N5886 TIP110	TIP110
RCA1A11 2N3439 SDT3550 2N4235 SDT9705 2N5629 TIP111	TIP111

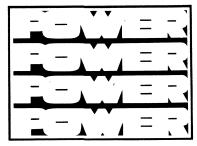
Industry Type Number TIP112 TIP115 TIP116 TIP117 TIP120	Fairchild Nearest Standard TIP112 TIP115 TIP116 TIP117 TIP120	Industry Type Number TIP121 TIP122 TIP125 TIP126 TIP127	Fairchild Nearest Standard TIP121 TIP122 TIP125 TIP126 TIP127	Industry Type Number TIP140 TIP141 TIP142 TIP145 TIP146	Fairchild Nearest Standard SE9300 SE9301 SE9302 SE9400 SE9401	Industry Type Number TIP147 TIP640 TIP641 TIP645 TIP642 TIP2955	Fairchild Nearest Standard SE9402 SE9303 SE9304 SE9403 SE9305 FT2955
						TIP3055	FT3055
	× .						
			1				
						*	
			1 V 1				

DEVICE SELECTION GUIDES AND CROSS REFERENCE

POWER TRANSISTOR TECHNOLOGY

SAFE OPERATING AREA

POWER TRANSISTOR MANUFACTURING


POWER TRANSISTOR PACKAGING AND HEAT SINKING

POWER TRANSISTOR RELIABILITY

PRODUCT INFORMATION

DEFINITIONS OF SYMBOLS AND TERMS

FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS

CHAPTER 1

- Structures
- Geometries
- Design Consideration
- Conclusion

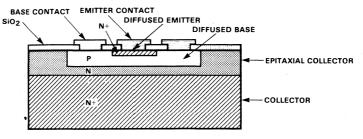
Chapter 1 POWER TRANSISTOR TECHNOLOGY

Advances in power transistor design are continuously providing higher power output, improved efficiency and better frequency response. Power transistors can handle currents in excess of 100 A, voltages up to 3000 V, large power dissipation, and drastic current and voltage surges. In addition, they exhibit several phenomena which are of little importance in small signal transistors—conductivity modulation, base widening, emitter current crowding, second breakdown, high voltage surface effects and thermal fatigue.

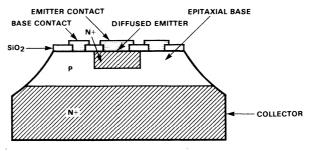
Power transistor fabrication methods vary. Small-signal transistors and integrated circuits are generally constructed using many steps of rather shallow diffusions into an epitaxial layer supported by a low resistivity substrate. Power transistors are manufactured using at least six basically different technologies—double-diffused epitaxial Planar*, triple-diffused Planar, single epitaxial-base mesa, multiple-epitaxial double-diffused mesa and single diffused (hometaxial). Each structure eliminates one or more of the phenomena mentioned above and differs significantly from the others in characteristics and performance. The structure and geometry of each technique have an important impact on deciding which power transistor will give the optimum performance in a particular application. Fairchild uses four of these processing technologies—double-diffused epitaxial Planar, single epitaxial-base mesa, multiple epitaxial-base mesa and multiple-epitaxial double-diffused mesa—to provide highly reliable low-cost power transistors with maximum performance capabilities.

STRUCTURES (Figure 1-1)

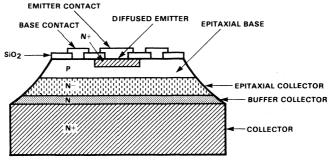
Double-Diffused Epitaxial Planar

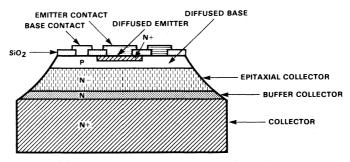

These power transistors, made by the same process used for small-signal transistors, are characterized by shallow diffusions into an epitaxial layer. The junctions are normally passivated with silicon dioxide to ensure low leakage currents and optimum stability. This is the most common form of Planar power transistor and both npn and pnp types can easily be made. The devices typically have very low leakage, high gain, low saturation voltage and high gain-bandwidth product. Typical values for the latter range from 20 to 200 MHz. Double-diffused epitaxial Planar transistors are primarily used in high frequency, high reliability switching and amplifying applications with f_T ratings greater than 30 MHz and maximum collector current ratings up to 10 A.

These transistors have a relatively poor safe operating area because of the narrow base region and the depletion of the entire voltage into the collector region. Maximum die yield depends on expert photoresist techniques for diffusing impurities through an opening etched in the surface oxide. The oxide-masked and phosphorous-passivated Planar structures allow lower leakage than mesa junction devices. The structure is limited to approximately 400 V breakdown voltage. This is a result of uncontrolled surface charge introduced into the high field region associated with the finite radius of curvature of the impurity diffusion front. This results in premature breakdown. The use of metallic overlay (junction field plate) and resistive films is employed to combat these effects.


Single Epitaxial-Base Mesa

These transistors are manufactured by diffusing an emitter into an epitaxial base region deposited on the collector substrate. The collector voltage depletes into the base region. The device is fairly rugged with reasonable gain and medium f_T . The safe operating area capability is between Planar triple diffused and single diffused mesa. Epitaxial base devices gain ruggedness as a result of the wide and homogeneous base region. Both npn and pnp-type transistors can be made by this process. Performance is somewhat limited by low voltage ratings imposed by the abrupt base-collector junction formed between the heavily doped collector substrate and the epitaxially deposited base layer, and by the thickness of this layer.


*Planar is a patented Fairchild process.


Double-Diffused Epitaxial Planar

Single Epitaxial-Base Mesa

Multiple Epitaxial-Base Mesa

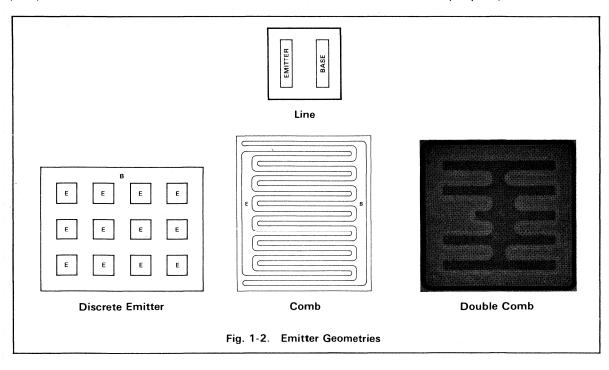
Multiple-Epitaxial Double-Diffused Base Mesa

Fig. 1-1 Basic Power Transistor Structures

Multiple Epitaxial-Base Mesa

This process uses two epitaxial layers to form the collector and base regions, a mesa etch to define the collector-base junction, and Planar processing to form the emitter-base junction. This produces low-cost, high-current devices with excellent safe-area capabilities. Epitaxial-base transistors gain ruggedness as the result of the wide homogeneous base region. When compared to conventional single-diffused devices, epitaxial-base mesa transistors exhibit higher working voltage capabilities, lower saturation voltages, and lower leakage currents. Beta linearity is also improved and npn and pnp complementary devices are readily produced. Maximum current ratings extend to 50 A and f_T ratings to 15 MHz.

Multiple-Epitaxial Double-Diffused Base Mesa


This structure is identical to the double-diffused epitaxial except that multiple-epitaxial layers are used in the collector region and the collector-base junction is formed by a mesa etch. A low resistivity thin layer is epitaxially grown between the highly doped substrate and the low-epitaxial collector region. The advantages of the multiple-epitaxial double-diffused structure are high speed ($f_T = 50 \text{ MHz}$), low saturation voltage and increased E_{SR} capability due to the epitaxial intermediate collector.

GEOMETRIES

The transistor geometry, in conjunction with its structure, establishes most of the fundamental electrical, thermal, and economic properties. Proper geometric design of a transistor provides for many compromises that can result in a variety of advantages and disadvantages from different structures.

The basic objective for most power-transistor geometry designs is to obtain the highest current handling per unit area of die. This results in lower cost designs or, as in high-frequency transistors, higher speed as a result of the smaller device areas.

Power-transistor geometries have evolved from the very early inefficient line-geometry configurations to the present-day sophisticated discrete-emitter concepts (*Figure 1-2*). Current crowding, which causes high current density, is the greatest contributor to reductions in current gain. Emitter periphery is the crucial design factor in minimizing this problem, therefore, emitter geometry is designed for high periphery-to-area ratio. The device structure dictates, to some extent, how much periphery can be made.

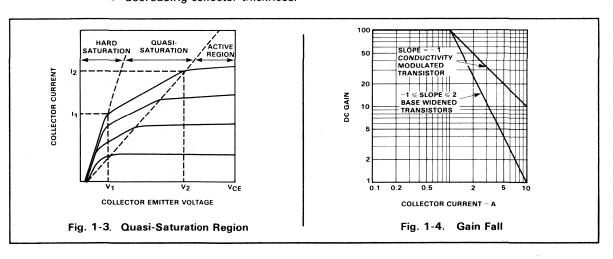
DESIGN CONSIDERATIONS

Power transistors, manufactured by the methods outlined above, differ in gain characteristic, frequency response, power capability and cost. Therefore, the selection of the best power transistor for any particular application amounts to a trade off among many crucial design parameters. Design considerations for power transistors are generally more complex than for small signal devices. Some generally accepted simplifications in the transistor theory are no longer valid under conditions of high voltage or high current. However, the knowledgeable device engineer can optimize the performance of a power transistor for its intended application. The design parameters may be divided into four classes—electrical, thermal, mechanical and cost.

Electrical

The electrical parameters of a power transistor are not only of importance for device performance as a switch or amplifier, but they also determine the reliability and durability of the device under various operating conditions.

Saturation


Saturation, mainly caused by collector-layer resistance, is present in all transistors but is more pronounced for high-voltage devices due to inherently higher collector resistivity (*Figure 1-3*). Low saturation voltage means low power loss for a given collector current ($P = V_{CE(sat)} \times I_C$). Low saturation voltage can be achieved by

- an epitaxial collector,
- decreased collector thickness.
- decreased collector resistivity,
- interdigitated design,
- large chip size.

Quasi Saturation

Quasi saturation, only apparent in high-voltage transistors, is evidenced by the slope of the collector current vs collector voltage (*Figure 1-3*). This effect is caused by a distortion of the collector-base density, where the density of the minority carriers approaches that of the fixed charges in the semiconductor. This leads to reduced gain due to base widening (*Figure 1-4*). The effects of quasi saturation can be minimized by

- measuring gain at higher voltages,
- decreasing collector resistivity,
- decreasing collector thickness.

High Current Gain

High current gain is reduced by conductivity modulation and current crowding. Conductivity modulation occurs mainly in wide, high-resistivity-base transistors. It is caused by high level injection of mobile carriers in the base, thus temporarily decreasing the effective resistivity of the base and, therefore, the emitter efficiency, giving lower current gain at higher current. The negative effect of conductivity modulation on high current gain can be reduced by

- decreasing base resistivity,
- decreasing base width.

Current crowding is caused by two types of resistive debiasing. One is due to the lateral voltage drop in the base region beneath the emitter. This causes a higher base potential along the edge of the emitter and, consequently, a higher emitter current density along the emitter periphery. Since most transistors have relatively thin base structures of high resistivity, the current concentration continues through the collector-base junction and through most of the collector. Thus the effective area of the transistor is reduced and the high current gain drops off. The lateral debiasing effect can be minimized by

- reducing base resistivity beneath the emitter,
- increasing base width,
- interdigitated emitter with low width/length ratio.

Resistive debiasing along the metalization over the emitter fingers is another limiting factor on high current gain. The emitter current causes a longitudinal voltage drop in the metalization, which decreases the emitter-base voltage as the distance from the emitter bond increases. The resulting longitudinal current crowding in the vicinity of the emitter bond also reduces the effective area of the transistor. The voltage drop in the metalization can be reduced by

- lower resistivity metalization (aluminum),
- thicker metalization,
- emitter fingers with high width/length ratio.

It is evident from this discussion that the required width/length ratio of the emitter fingers to minimize both sources of current crowding are in conflict. Aside from its ill effect on current gain, current crowding is also one major cause for overheating and possible destruction. To achieve high current capability, the emitter must have a large area, be highly efficient, and inject uniformly. The interdigitated structure with many long thin fingers and aluminum metalization meets these requirements.

Non-Linear Gain

Non-linear gain in the active region is caused by the Early effects (*Figure 1-3*), *i.e.*, the gain increases with higher collector voltages. The cause of this phenomenon is the expansion of the depletion region into the base and, consequently, the narrowing of the neutral base width.

High-Voltage Surface Effects

Mesa power transistors can be made with high breakdown voltages because collector-base junctions are not seriously affected by radius effects and field-induced distortions. Leakage is highly dependent on the proper preparation of the exposed junction in the mesa groove prior to varnish passivation in the package. Any surface contamination in the mesa obviously increases the leakage current of the device.

In Planar* devices, both junctions are covered with silicon dioxide to eliminate the problems of outside contamination. Therefore, they have very low leakage currents. The breakdown voltage, however, can be limited by distortions of the depletion region from radius effects and fields induced by static charges in the oxide. Since the diffusion of the impurities in the silicon occurs laterally as well as vertically, the ra-*Planar is a patented Fairchild process.

dius of the junction edge is equal to the depth of the diffusion. This dimension is in the order of microns, thus the electric-field strength at the curved edge of the junction is considerably increased for any given voltage. This leads to premature breakdown for curved junctions compared to plane junctions.

The presence of fixed and mobile charges in the oxide, or at the silicon-oxide interface, can induce considerable changes in the density of mobile carriers in the silicon close to the surface. Since positive charges usually dominate in the oxide, the charges tend to enhance the electron concentration in n-type silicon and to reduce the hole concentration in p-type silicon. As a consequence, the depletion region close to the surface is reduced in width on the n-side of a junction (lower breakdown voltage). Conversely, the depletion region close to the surface may be increased in width through a field-induced channel on the p-side of a junction (higher leakage through channel). In most cases these effects are only of importance for the collector-base junction, which requires higher breakdown voltage. The collector-base breakdown voltage can be increased by

- using a field plate, or
- using a voltage ring.

Thermal

Thermal design must combat thermal instability and second breakdown. Thermal instability is caused by unintentional temperature difference between various emitter locations. Current density is strongly dependent upon the temperature of the emitter-base junction. If current density is higher in some particular part of the structure, due to a defect of some sort such as a hot spot in the base layer, local temperature rise then occurs. At constant forward bias across the emitter junction, an approximately 10% increase in current occurs for every 1°C increase in temperature. Thus, the local temperature rise further increases the local current and a positive feedback situation occurs. If the gain around this feedback loop is greater than one, *i.e.*, if temperature rise produces a larger increase in current than that which originally caused the temperature rise, an unstable situation exists. Current and temperature build up locally and destroy the device. Thermal instability can be minimized by

- thinner transistor chips to allow heat in the device to be more efficiently dissipated by a heat sink,
- increased base width and decreased emitter-finger width to provide more uniform current distribution,
- increased base doping which also improves current distribution,
- a number of separate discrete emitters each with a ballasting resistor placed in series. These resistors insert a voltage drop in each emitter proportional to the current passing through the emitter, inserting current feed-back and equalizing current among the emitters.

Thermal instability can cause a serious reliability problem in power transistors, namely second breakdown. Second breakdown occurs when a bipolar transistor is operated at high power density and the emitter-collector voltage suddenly drops to a low value. Unless power is removed, overheating either destroys or materially degrades the transistor. Second breakdown (SB) is a thermal hot-spot phenomenon within the transistor die with two stages of development. The first is constriction where, because of thermal regeneration, current tends to concentrate in a small area. The second stage, destruction, occurs when local temperatures and temperature gradients increase until they cause permanent device damage.

The constriction can start any number of ways. One section of the emitter-base junction need only have a higher temperature than another. Such a hot spot might be caused by resistive debiasing, divergent heat flow to the device heat sink, an inhomogeneity in the thermal part, or other irregularities or imperfections within the device. Once a slightly hotter emitter-base region is present, positive thermal feed-

back begins; the hot region injects more and therefore gets hotter and the device goes into second breakdown. Forward biased second-breakdown current I_{SB} can be controlled by either emitter or base ballasting, which effectively equalizes drive conditions within the device and maintains uniformity. Ballasting against reverse-biased second breakdown E_{SB} can be achieved by the addition of a resistive layer in the collector which decreases the collector-emitter voltage in the affected region.

Mechanical

Power transistors are subjected to a large number of temperature changes during fabrication, screening and storage. Also, they are often used in applications where cycling the power causes repeated temperature cycling. Because transistors are constructed of materials that have different thermal coefficients of expansion, stress can be induced in the chip. Stress is a function of the difference between coefficients of expansion, the change in temperature, the respective moduli of elasticity, and the thickness. Power transistors, therefore, are made with materials having close thermal coefficients of expansion to minimize stress. Power transistors, however, require that the heat generated during operation be conducted away from the die. Material used for this heat conduction generally has a much higher coefficient of expansion than semiconductor material, especially silicon. Several techniques are used to minimize thermal fatigue. One method is to mount the chip on a metal such as molybdenum, which has a thermal coefficient of expansion similar to silicon, and braze it on a metal such as copper with very high thermal conductivity. The rate of degradation of the metallurgical bond under stress is also proportional to the average and peak temperature excursions of the bond. The most economical way to obtain reliability in a power transistor, therefore, is to reduce the temperature by careful consideration of heat flow during equipment design.

Cost Reduction

The cost of silicon power transistors is often a factor in the manufacturing method chosen. For large area devices (200 x 200 mil), cost is principally in the dice. Package cost, assembling and testing are secondary, therefore, cost reduction must be made in the wafer fabrication area. Early silicon wafers were small, only one inch in diameter, thus costs were high since each wafer undergoes the same number of processing steps regardless of size. It was obvious that increased wafer diameter would reduce cost, yields being equal. Now, most manufacturers have converted to 2-1/2- or 3-inch wafers to reduce processing cost per die. As an example, only 16 dice (200 x 200 mil) can be obtained from a 1-inch wafer while 145 dice can be obtained from a 3-inch wafer. The die cost is not reduced by this order of magnitude, however, since the raw-wafer cost is somewhat higher.

Lower die cost is often a reason for choosing a mesa approach if reliability is not the prime objective. The wafer fabrication process is shorter and the number of electrically good dice per wafer generally higher when using mesa technoloty instead of Planar. The Planar process can suffer from low yields as a result of pin holes in the passivating oxide, oxide islands left in the base cut, and accumulation of impurities along the oxide edges.

For military applications that require large transistors and high reliability, the cost of packaging, testing and processing far exceeds the cost of the dice. Even in a TO-5 package, the die cost often becomes an insignificant factor of the total transistor cost. Using a die size smaller than 80 x 80 mil and large wafers, it matters little which approach, mesa or Planar, is used as far as die cost is concerned.

CONCLUSION

The transistor designer is faced with the problem of trying to optimize transistor parameters to attain performance as close to the ideal as possible; unfortunately, this is not easy. Since each specific parameter is related to the properties and geometry of the actual transistor structure, it is not possible to optimize without getting into conflicting requirements. This is best illustrated in *Table 1-1* and *1-2* which show the behavior of the basic electrical parameters when the transistor properties are changed. Furthermore, although the design theory may show that it is conceivable to obtain a near-ideal junction transistor, it may not be practical to fabricate such a device within the limitations of the transistor state-of-the-art.

Several basic processes exist today for making junction transistors, each yielding different impurity structures. For each type, however, certain electrical parameters must be sacrificed for the sake of others. Therefore, for some circuit applications, one process type may be more suitable than another.

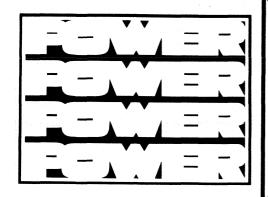

Physical Parameter					Electrical Parameter						
			fT	t _d , t _r . t _f , t _s	VCEO(sus)	V _{CE(sat)}	V _{BE}	hFE (peak)	IC(max)	^I SB	E _{SB}
Base width	†	1.	↓	†	1	1	. 1	↓	↓	1	1
Base resistivity	† ·			1		↓	1	1	. ↓	1	1
Collector width	1		1	1	†	· · · · · · · · · · · · · · · · · · ·	1	- -	1		· ↑ · · · ·
Collector resistivity	1		1	1	1	†	1	_	1	1	1
Emitter width (finger)	1		Į.	1	, , , , , , , , , , , , , , , , , , ,	-	1		1	↓	· · · · · · · · · · · · · · · · · · ·
Emitter ballast	1		†	1	_	1	↑	_	. ↑ ↑ ·	†	
Collector ballast	. †		1	1		ii †,			1		1

Table 1-1. Interrelation Among Physical and Electrical Parameters

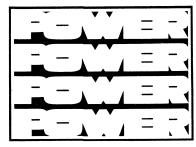

Physical Para	meter		Electrical Parameter				
		fT	t _d , t _r	V _{CE(sat)}	hFE (Peak)	IC(max)	Cost
I _{SB}	1	↓	1	1	+	1	1
E _{SB}	1	↓	1	†	1.	↓	1
V _{CEO(sus)}	↑	↓	†	†		1	1

Table 1-2. Interrelation Among Electrical Parameters

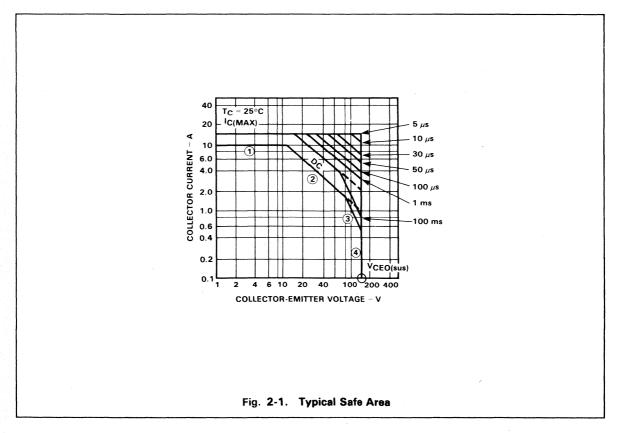
	Symbols for Tables 1 and 2
f _T -	-current gain bandwidth
td-	-delay time
tr-	rise time
tf-	fall time
ts-	storage time
ISB	forward second breakdown current
hFI	-dc current gain
IC-	EO(sus)—collector to emitter voltage, base open E(sat)—collector to emitter saturation voltage -collector current (current handling) -reverse second breakdown energy
1 11	ncrease
† C	ecrease

	DEVICE SELECTION GUIDES AND CROSS REFERENCE	
	POWER TRANSISTOR TECHNOLOGY	
)	SAFE OPERATING AREA] :
	POWER TRANSISTOR MANUFACTURING	3
	POWER TRANSISTOR PACKAGING AND HEAT SINKING	4
	POWER TRANSISTOR RELIABILITY	5
	PRODUCT INFORMATION	6
	DEFINITIONS OF SYMBOLS AND TERMS	7
	FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS	8

CHAPTER 2

- DC Forward-Biased Safe Operating Area
- Pulsed SOA
- Testing of Forward Biased SOA
- Reverse-Biased Safe Operating Area

Chapter 2 SAFE OPERATING AREA


A number of factors such as second breakdown, dissipation capability, current and voltage ratings, and ambient temperature critically affect the performance of power transistors in circuit applications. These factors define the safe operating areas (SOA) for the forward-biased and reverse-biased modes, within which each device can be safely operated without failure or degradation. Most manufacturers publish SOA curves to provide the circuit designer with an easy method for specifying power transistors.

DC FORWARD-BIASED SAFE OPERATING AREA

A transistor working in the active region is subjected to voltage and current at the same time and dissipates power. Figure 2-1 shows a typical safe operating area (SOA) for the active region. This is called forward-biased SOA since the base of the transistor is positive with respect to the emitter. Collector current I_C is shown as a function of collector-to-emitter voltage V_{CE} . Each curve is labeled with the duration of the on pulse – from the worst-case dc condition to a minimum duration of 5 μ s – at T_C = 25°C and a 1% duty cycle. The four factors limiting the dc forward-biased SOA of a particular power transistor are the collector current (1), thermal limitations (2), second breakdown (3), and open base breakdown voltage, $V_{CEO(sus)}$ (4).

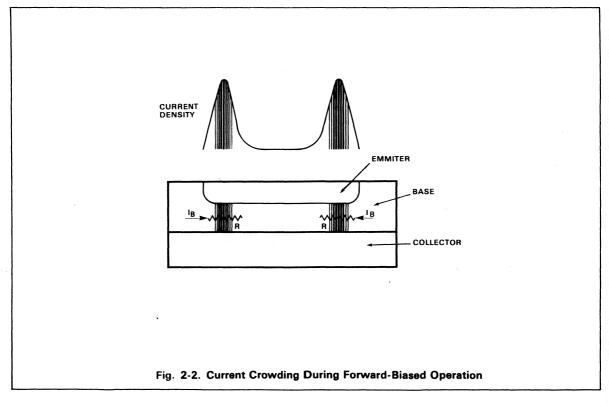
IC - Limit (1 on the SOA curve in Figure 2-1)

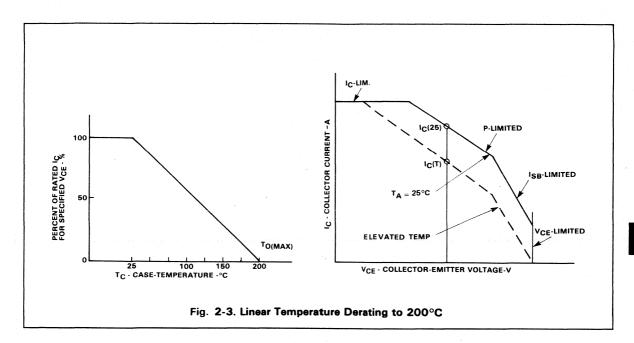
The I_C is limited by the current handling capability of the bonding wires. For current pulses, the limit is higher than for dc since the thermal capacitance of the wire prevents instantaneous heating.

Thermal Limit (2 in Figure 2-1)

The maximum permissible power dissipation is determined by the maximum operating temperature of the transistor. In Figure 2-1, the case temperature T_C is constant, normally 25°C; therefore the power limitation is

$$P_{D} = \frac{T_{J(max)} - 25^{\circ}C}{\theta_{JC}}$$


where T_{J(max)} is maximum junction temperature.


 $\theta_{\rm JC}$ is junction-to-case thermal resistance.

Maximum operating temperature and thermal resistance can be found in the data sheets. $T_{J(max)}$ is normally 150°C for plastic transistors, 200°C for hermetic (metal can) types. If power is applied in excess of this limit, the transistor is not necessarily destroyed, but the mounting system of the die or the plastic can deteriorate. For power pulses, the limit is higher than for dc especially for short pulses due again to thermal capacitance.

ISB Limit (3 in Figure 2-1)

At higher voltages, the SOA of the transistor is limited by its forward-biased second breakdown capability, I_{SB}. In this mode, current crowding occurs at the emitter periphery. The higher the operating voltage, the more the base is pinched and the sheet resistance increases. Accordingly, the V_{BE} on the edges of the emitter is higher than in the middle because the base current is pushed under the emitter (Figure 2-2). Therefore emitter-current density increases on the emitter edges. This leads to localized heating, which in turn lowers the V_{BE} characteristic causing more crowding. Localized thermal runaway (hotspot) may occur. The process of temperature build-up along the emitter periphery takes some time; therefore the SOA limits for pulses are higher than for dc.

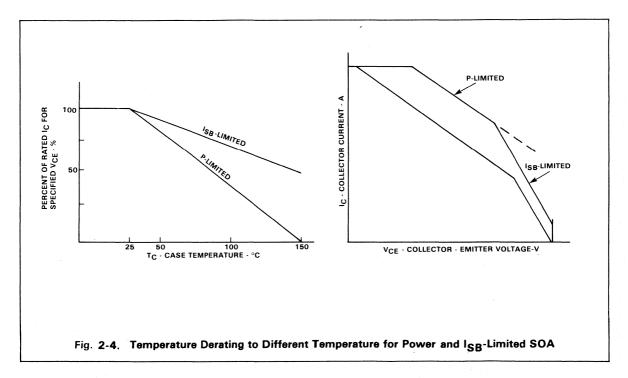
Voltage Limit (4 in Figure 2-1)

The collector-emitter voltage V_{CE} should never surpass the maximum limit; not even a very short pulse is permissable. If this should happen, the collector current, which is governed by the circuit rather than the transistor, is likely to rise to a high value. This may destroy the transistor.

SOA at Elevated Temperature

Figure 2-1 shows the SOA for room temperature, i.e., the transistor case is at 25°C. A power transistor normally runs at a higher temperature and the data sheet specifies a derating factor. Figure 2-3 shows linear derating to 200°C. The permissable collector current must be derated as well as the power and I_{SB} - limited segments of the SOA curve and the dc and pulse curves. The maximum collector current is not derated and stays the same for all operating temperatures (I_C-limited part of SOA curve).

The formula for linear derating is


$$I_{C(T)} = I_{C(25^{\circ}C)} \frac{T_{O} - T}{T_{O} - 25^{\circ}C}$$

I_{C(25°C)}permissable I_C at 25°C

 $I_{C(T)}$ permissable I_{C} at temperature T

 $T_{\mbox{\scriptsize O}}$ operating temperature, eg. 200°C in Figure 2-3

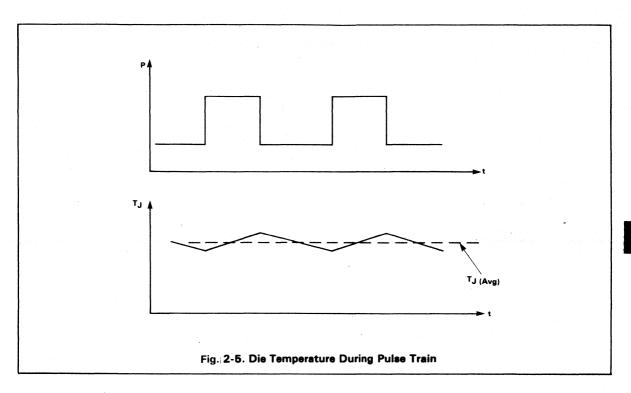
There are instances when the power-limited and the I_{SB} -limited parts of the SOA are derated differently. This is because the I_{SB} failure occurs at a localized hotspot of about 400°C. It should be noted in the example in Figure 2-4 that, in derating power and I_{SB} -limited parts of the SOA differently, the dotted part of the power-limit line must be used; the knee of the curve moves towards higher voltage. The pulse curves are temperature derated in the same manner as for dc.

PULSED SOA

Figure 2-1 shows pulsed SOA curves as well as dc SOA curves. They apply to a single pulse and to 25°C case temperature. The following procedure is used to determine whether or not a pulse train is safe.

Find the average temperature of the die.

$$T_{J(avg)} = \frac{P_{avg}}{\theta_{JX}} + T_{X}$$

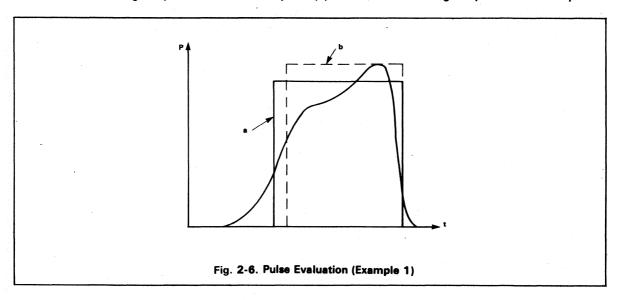

$$P_{avg} = \frac{1}{t} \int P(t) dt$$

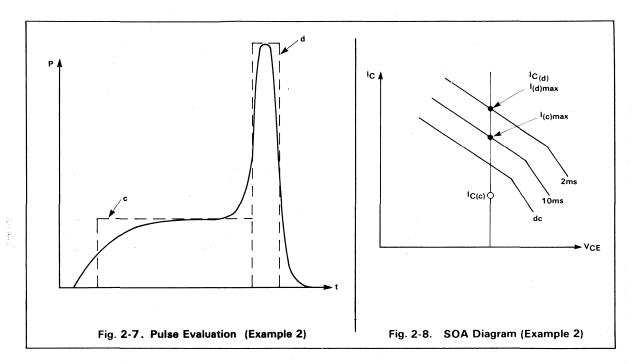
where P_{avg} is the average dissipation of the transistor, T_X is the temperature of the area where T is constant, θ_{JX} is the thermal resistance from the junction to T_X ; this may be the case, the heat sink or the ambient.

This average temperature is the result of all the dissipated power. Theoretically, this power can be eliminated by assuming a T_C equal to $T_{J(avg)}$. Now, one single pulse at $T_C = T_{J(avg)}$ can be evaluated to determine whether or not the whole pulse train is safe.

Derate the SOA curves to T_{J(avg)} and evaluate the single pulse.

This method is somewhat conservative, because the temperature immediately before the pulse is lower than the average temperature (Figure 2-5).




Pulse Evaluation

Up to now, only square pulses have been considered. Precise handling of non-square pulses is difficult, but in most cases, good approximations can be achieved.

Example 1

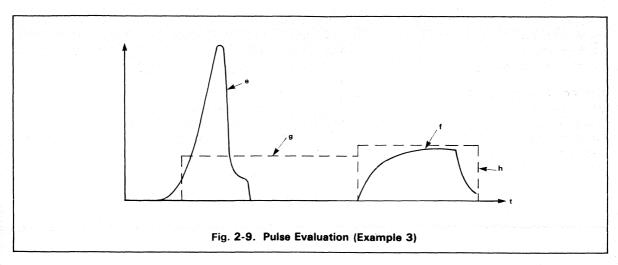
If a pulse as shown in Figure 2-6 is evaluated, the best approximation is a square pulse (a). But, since there is no easy way to get this pulse, a pulse (b) that is as high as the maximum power and has the same area as the original pulse is used. If this pulse (b) is safe, then the original pulse is certainly safe.

Example 2

For a pulse as shown in Figure 2-7, the above method would be too stringent. In this example, the pulse is approximated by two square pulses dividing along the broken line; pulse (c) is evaluated first. In Figure 2-8, $I_{C(c)}$ is the collector current that pulse (c) carries, while $I_{C(c)max}$ is the capability of the transistor. The fraction of the transistor I_C capability used by this pulse, which is also the amount of localized heating that has occurred, is determined by a simple formula.

$$X_c = \frac{I_{C(c)}}{I_{C(c)max}}$$

The second pulse (d) is then evaluated in the same manner. The application is safe if the following condition can be met.


$$X_c + X_d = \frac{I_{C(c)}}{I_{C(c)max}} + \frac{I_{C(d)}}{I_{C(d)max}} \le 100 \%$$

Example 3

Figure 2-9 is another example of a non-square pulse. First, pulse (e) is evaluated using the method in example 1. Note that the hotspot formed by pulse (e) by the time pulse (f) starts; this is taken into account when transforming pulse (e) into a square pulse (g) of equal area that ends where pulse (f) begins. Pulse (f) is then transformed into a square pulse (h) and (g) and (h) are evaluated by the same method used in example 2. Temperature derated SOA curves must be used.

If the power occurs at different voltages, it is safe to evaluate the pulses as if they all occurred at the highest voltage. A less conservative approach would be to segment the pulses and evaluate each segment at its voltage by the method described in example 2.

Although this method is not exact, it results in a decision as to the safety of the pulse in most cases. An area exists in between where more exact methods or experiments must be used.

TESTING OF FORWARD BIASED SOA

SOA testing is basically a destructive test. A power pulse, with a specified current, voltage and duration is applied to the transistor under test TUT. In case of failure, the TUT destroys itself. To avoid this, a protection circuit is used, to sense the failure and remove the power from the TUT. Protection time is different for each transistor; $25 \,\mu s$ may be satisfactory for a slow, rugged device, while a fast transistor, specially when tested at high voltage, needs $1 \,\mu s$ or less.

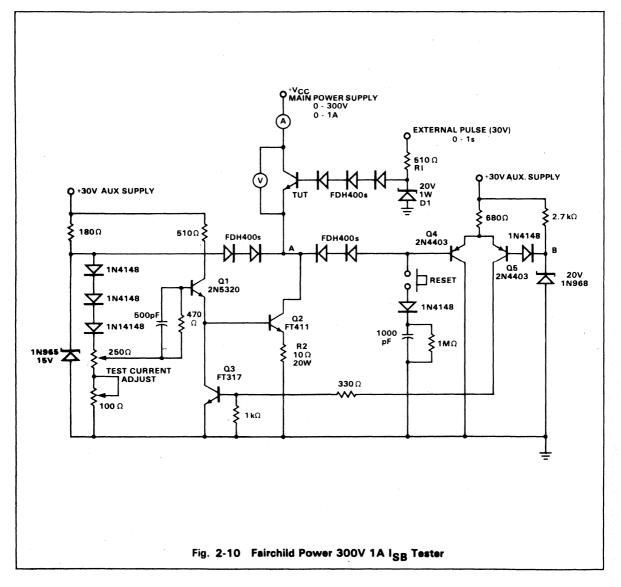
The basic circuit of the test set should provide reasonable accuracy; 5% accuracy in a working test set is better than 0.1% in one prone to false triggering, 1-2% is probably a happy medium. It should be able to apply the power pulse quickly for testing pulsed SOA (50-100 μ s settling time gives a 1 ms test capability). The power pulse should not cause ringing, that is apt to trigger the protection circuit. A test set must be capable of testing a variety of power transistors having different f_Ts.

The simple I_{SB} test set in Figure 2-10 operates up to 1 A and 300 V. The TUT is in series with a current source, Q2, Q1 and associated circuitry. I_C is set by the 250 Ω pot. The TUT base current is supplied by a 20V Zener diode D1 and is effectively in a common-base mode. This makes the circuit very stable since it takes the beta of the TUT out of the feedback loop. The test voltage is set by the main power supply which must be set 20V higher than V_{CE} since the Zener D1 pulls the base up 20V.

The timing pulse switches the TUT while the current source, Q2 and R2, is primed all the time. This holds point A low at all times, especially during turn-on, which is important to avoid "false triggering" of the protection circuit.

When the TUT fails, the collector-emitter voltage V_{CE} of the TUT collapses, and point A goes positive in respect to the reference voltage at point B. The differential amplifier Q4 - Q5 flips over, turning Q5 on, which in turn switches Q3 on. Transistor Q3 removes the base drive from the pass transistor Q2, and the current through the TUT is interrupted. Point A is held high and thus the protection circuit is latched until it is reset by the button which temporarily turns Q4 on.

The speed of the protection circuit depends largely on how fast Q2 can be switched off. Since Q2 operates with a V_{CE} of about 10 V, it is not in saturation and has very little storage time. Also, the base charge is actively removed by Q3 thus providing low fall time.

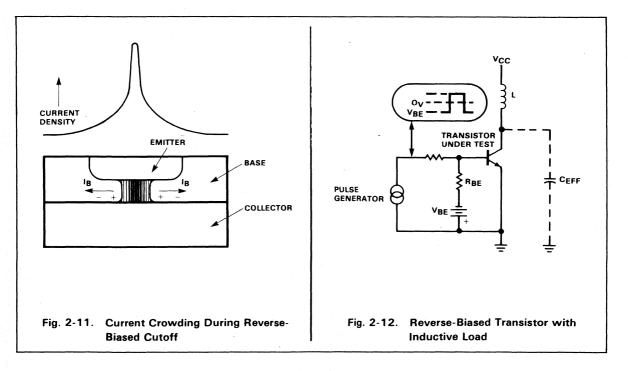

The pass transistor Q2 and its 10 Ω emitter resistor dissipates a maximum of 10W each. In a test set, it is good practice to design the circuit for double the dissipation. The diodes are used for slight level shifts and essentially trim threshold of the protection circuit to an optimum value.

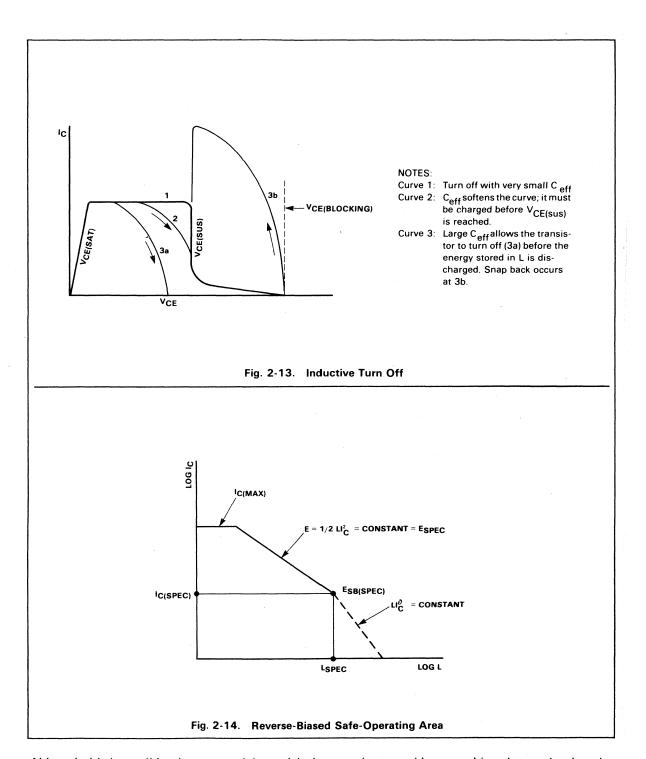
To operate the tester, first set I_C , preferably at reduced collector voltage to reduce dissipation during repeated testing. Next, set the collector voltage by setting the supply voltage about 10V above the desired V_{CE} . The fine trimming is done while testing. To facilitate testing, provisions could be added to set current and voltage as well as sample and hold circuitry to freeze the actual test values.

REVERSE-BIASED SAFE OPERATING AREA

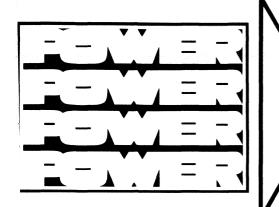
When the emitter-base junction of a transistor is reverse biased, the device begins to turn off. In an unclamped inductive circuit, an electrical stress occurs that can result in reverse-biased second breakdown. When the load is resistive or a clamped inductance, the transistor sees very little energy in the reverse-biased mode; but, when the load is an unclamped inductance, almost all of the energy contained in the coil is dumped into the transistor, *i.e.*,

$$E = 1/2 LI_{C}^{2}$$

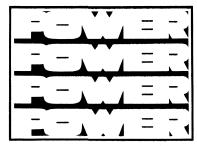



Second breakdown energy E_{SB} is the guaranteed reverse-biased energy the transistor is capable of withstanding. When the emitter-base junction is reverse biased, a transverse voltage gradient appears in the base region forcing severe current crowding under the center of the emitter (*Figure 2-11*). This condition is further aggravated by thermal feedback. If the energy in this hot spot raises the temperature of the silicon above approximately 400°C, the emitter-base junction goes into avalanche and the sustaining voltage collapses within nanoseconds. Usually, the transistor is destroyed.

During reverse-bias operation, current is concentrated in a small centralized area rather than in a relatively larger area under the emitter periphery as is the case during forward-biased operation. Therefore, since the current crowding is greater, ESB is much less than the energy capability when the transistor is forward biased.

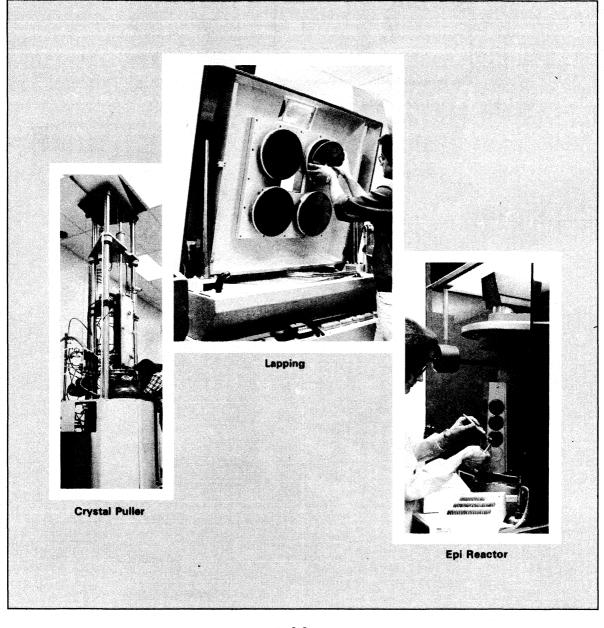

The E_{SB} capability of a power transistor depends on both the transistor and the circuit design. For low E_{SB} stress, the transistor design must include a large emitter area, a high resistive collector and graded collector doping to reduce current crowding. The circuit should be designed with low inductance (*Figure 2-12*) and low I_{C} to maintain low energy, keeping in mind that for a specified energy level, as L increases, second breakdown stress on the transistor becomes more severe. To reduce the transverse voltage gradient in the base, and therefore reduce current crowding, low reverse bias V_{BE} and large base resistance R_{BE} are required.

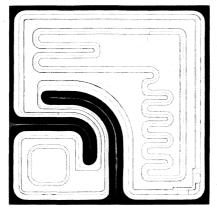
The effective capacitance C_{eff} on the collector should be low, otherwise it takes too long for the C_{eff} to charge to $V_{CE(sus)}$ and the device turns off completely (curve 3a in Figure 2-13). When this happens, the voltage rises to the blocking voltage and the C_{eff} discharges into the transistor (snap back). This is a very stressing situation since the collector current goes high during total cutoff thus causing extreme current crowding. Generally, an E_{SB} stress is safe as long as the dissipated energy is less than that specified on the data sheet and provided $L \leq L_{spec}$, $R_{BE} \geq R_{BE(spec)}$, $|V_{BE}| \leq |V_{BE(spec)}|$, and the device is operated in the sustaining mode and snapback is avoided by holding C_{eff} low (See Figure 2-14). When $L > L_{spec}$, the SOA limit follows an approximate curve, LI_C^0 = constant; it is usually safe to consider $\vartheta = 1$.


Although this is a valid rating system, it is good design practice to avoid reverse-biased stress by clamping or waveshaping. While the power-transistor manufacturer can guarantee an E_{SB} rating, it must be kept in mind that non-destructive testing is difficult, lot-to-lot and unit-to-unit variations are significant and the fast high voltage power transistors, in particular, have limited E_{SB} capabilities.

DEVICE	SELE	CTION G	UIDES	AND
CROSS	REFE	RENCE		

CROSS REFERENCE	
POWER TRANSISTOR TECHNOLOGY	
SAFE OPERATING AREA	
POWER TRANSISTOR MANUFACTURING	
POWER TRANSISTOR PACKAGING AND HEAT SINKING	
POWER TRANSISTOR RELIABILITY	
PRODUCT INFORMATION	
DEFINITIONS OF SYMBOLS AND TERMS	


FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS



CHAPTER 3

Chapter 3 MANUFACTURING

Modern equipment plus state-of-the art technology enables Fairchild to build competitive high reliability, high volume power devices. Important stages of manufacture are illustrated. The Fairchild Power Group does not depend upon outside sources for critical materials or processing.

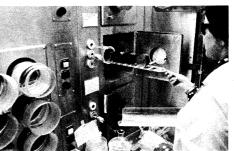
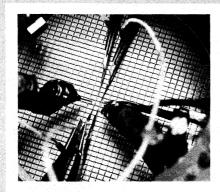
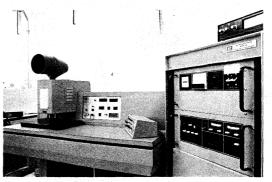
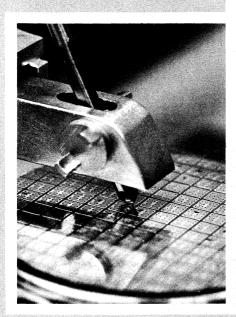

Mask

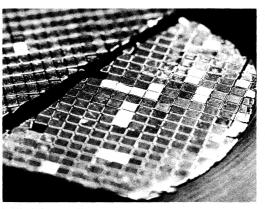
Photo Mask Alignment

Etching


Automatic Diffusion Furnace

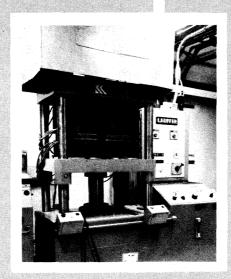

Wafers Mounted for Evaporator


Completed Wafers Ready for Assembly


Probing the Die

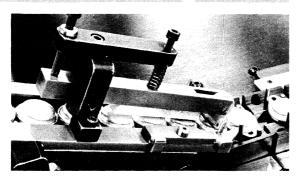
Laser Scriber

Diamond Scribing


Broken Wafer

TO-220/TO-3 Die Attach Furnace

Heavy Duty Stitch Bonder


TO-220 Plastic Mold

TO-3 Tester

TO-39 Lead Straightener

Automated TO-3 Handling

Marker and Drier

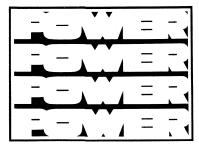
Automatic Tray Pack

DEVICE SELECTION GUIDES AND CROSS REFERENCE

POWER TRANSISTOR TECHNOLOGY

SAFE OPERATING AREA

POWER TRANSISTOR MANUFACTURING


POWER TRANSISTOR PACKAGING AND HEAT SINKING

POWER TRANSISTOR RELIABILITY

PRODUCT INFORMATION

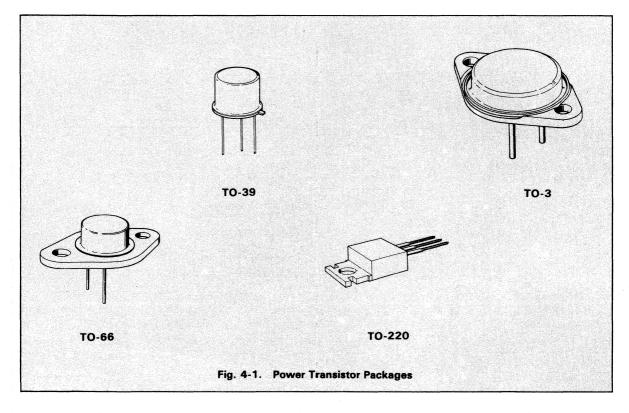
DEFINITIONS OF SYMBOLS AND TERMS

FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS

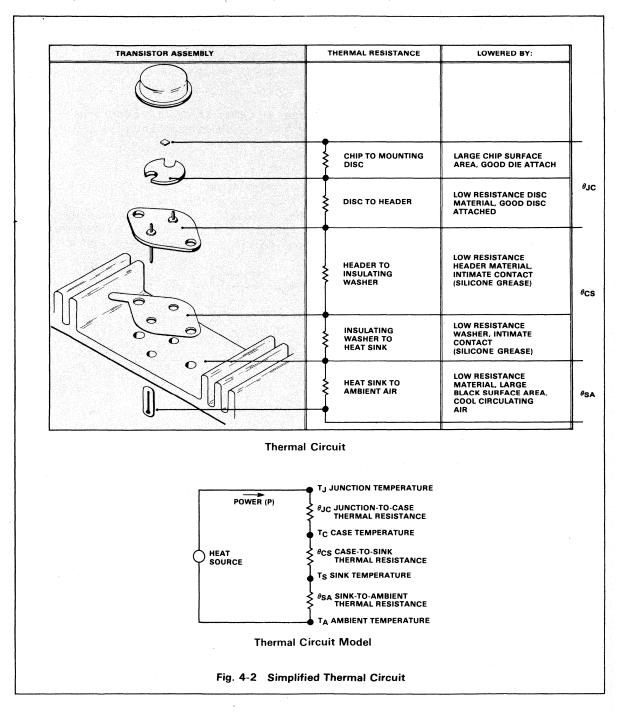
CHAPTER 4

- Thermal Resistance
- Heat Sinking
- Mounting TechniquesTO-220 Lead Bending
- Tips for Better Heat Sinking

Chapter 4 POWER TRANSISTOR PACKAGING AND HEAT SINKING


Fairchild offers a wide variety of power packages to fill every power-transistor requirement (*Figure 4-1*). For low and medium power applications, the TO-39 and TO-66 hermetic packages are available. Their sturdy construction ensures high reliability in virtually any environment. For high power and high reliability requirements, a wide range of dice is provided in the TO-3 package. The plastic TO-220 gives the best trade-off between cost and reliability and can be confidently designed into applications where cost is a major factor.

After the designer has considered all the power-transistor requirements based on maximum ratings, reliability, cost and design dimensions, he reaches the point where a decision must be made on package. Usually, more than one will meet the power requirement.


THERMAL RESISTANCE

The most useful design tool is thermal resistance. This figure of merit is an electrical analogy of the heat flow from the transistor junction. *Figure 4-2* shows a simplified equivalent circuit for a typical semiconductor device in equilibrium. The power dissipation, which is analogous to current flow in electrical terms, is caused by a heat source similar to a voltage source. Temperature is analogous to voltage potential and thermal resistance to ohmic resistance. Extending the analogy of Ohm's law to *Figure 4-2*.

$$\theta_{\text{JA(tot)}} = \theta_{\text{JC}} + \theta_{\text{CS}} + \theta_{\text{SA}} = \frac{T_{\text{J}} - T_{\text{A}}}{P_{\text{D}}}$$

Thermal resistance, then, is the rise in the temperature of a package above some reference level per unit of power dissipation in that package, usually expressed in degrees centigrade per watt. The reference temperature may be ambient or it may be the temperature of a heat sink to which the package is connected. There are several factors that affect thermal resistance including die size, the size of the heat source on the die, die-attach material and thickness, leadframe material, construction and thickness.

474		
PACKAGE	θ _{JC} (°C/W)	θ _{CA} (°C/W)
TO-5/39	25 – 40	150
TO-220	1.5 - 3.0	70
TO-66	5 – 15	66
TO-3	0.8 - 6	30

Table 4-1. Thermal Resistance Ranges Junction to Case

Some typical values of junction-to-case thermal resistance θ_{JC} for different packages are shown in *Table 4-1*. Note that many packages have overlapping thermal resistance values. There are limitations to the thermal resistance model because junction temperature is never spatially uniform and there is no unique value that can be defined for all operating conditions; therefore, the model must be used for a first approximation. The manufacturer's safe operating area curves must be referenced for secondary breakdown limitations and pulsed characteristics.

In general, a reliable design has the lowest calculated junction temperature, therefore it is good practice to make a decision based on the calculated temperature for a package. The choice can be made between using a small package at a high junction temperature versus a larger package at a lower temperature. There is an obvious trade off between cost and reliability. In many applications, plastic power transistors can be used to accomplish the best trade off. Plastic power transistors are less expensive because of the strip assembly which lends itself more readily to automated assembly. As die costs continue to improve, the package becomes a higher percentage of the total device cost. With plastic power devices, the designer can achieve the minimum cost per watt. Their small size make them particularly good for designs that require high peak power for a relatively small amount of space.

HEAT SINKING

The failure rate of silicon semiconductors decreases approximately one order of magnitude for every 40°C decrease in junction temperature. Therefore, transistor mounting and heat sinking is critical for the best utilization of the power transistor. In general two types of commercial heat sinks are used, the extruded type with a specified thermal resistance and the clip-on heat sink. Thermal resistance information on commercially available heat sinks is normally provided by the heat sink manufacturer; a summary is shown in *Table 4-2*. Once the heat sink thermal resistance is known, then for any ambient temperature, the maximum available power dissipation for a particular device may be calculated using the following formula.

$$P_{D(max)} = \frac{T_{J(max)} - T_{A(max)}}{\theta_{JC} + \theta_{CS} + \theta_{SA}}$$

where:

 θ_{JC} = Thermal resistance from junction to case.

 θ_{CS} = Thermal resistance from case to heat sink.

 θ_{SA} = Thermal resistance from heat sink to ambient.

Thermal resistance decreases as the thickness of the mounting material increases. The θ_{CS} varies with the device-heat-sink interface—the use or absence of a zinc-filled silicone grease to help remove surface voids, the inclusion or absence of an electrical isolating mica, beryllia, or anodized aluminum washer, and finally the degree of mounting pressure which is applied through the device hold-down mechanism. Applicable package torque specifications should be observed to further minimize the case-to-heat sink thermal resistance. A comparison of thermal resistances θ_{CS} for various mounting techniques is given in

Table 4-3. The maximum power dissipation capability of a device can be calculated for the following electrical and thermal conditions:

Power device	2N3055
Maximum ambient temperature	65°C
Heat sink thermal resistance*	2.5°C/W at 10 W
Mica washer with silicone grease**	0.4°C/W
θ (from data sheet)	1.5°C/W

^{*}Thermal resistance decreases slightly with increasing power dissipation.

This list is only representative. No attempt has been made to provide a complete list of all heat sink manufacturers. All values are typical as given by manufacturer or as determined from characteristic curves supplied by manufacturer.

θ _{SA} Approx. (°C/W)	Manufacturer and Type	^θ SA Approx. (°C/W)	Manufacturer and Type	
	TO-3 Packages		TO-220 Packages *	
0.4 (9" length)	Thermalloy (Extruded) 6590 Series	8.8	Staver V3-7-96	
0.4 - 0.5	Thermalloy (Extruded) 6660,	9.5	Staver V3-3	
(6" length)	6560 Series	10	Thermalloy 6032, 6034 Series	
0.56 - 3.0	Wakefield 400 Series	12.5 - 14.2	Staver V4-3-192	
0.6 (7.5" length)	Thermalloy (Extruded) 6470 Series	13	Staver V5-1	
0.7 - 1.2	Thermalloy (Extruded) 6423, 6443,	15	Thermalloy 6030 Series	
(5 - 5.5" length	n) 6441, 6450 Series	15.1 — 17.2	Staver V4-3-128	
1.0 - 5.4	Thermalloy (Extruded) 6427, 6500,	16	Thermalloy 6072, 6106 Series	
(3" length)	6123, 6401, 6403, 6421, 6463,	18	Thermalloy 6038, 6107 Series	
	6176, 6129, 6141, 6169, 6135,	19	IERC PB Series	
	6442 Series	20	Staver V6-2	
1.9	IERC E2 Series (Extruded)	20	Thermalloy 6025 Series	
2.1	IERC E1, E3 Series (Extruded)	25	IERC PA Series	
2.3 - 4.7	Wakefield 600 Series			
4.2	IERC HP3 Series	т	O-5 and TO-39 Packages	
4.5	Staver V3-5-2		·	
4.8 7.5	Thermalloy 6001 Series	12	Thermalloy 1101, 1103 Series	
5 — 6	IERC HP3 Series	12 - 16	Wakefield 260-5 Series	
5 — 10	Thermalloy 6013 Series	15	Staver V3A-5	
5.6	Staver V3-3-2	22	Thermalloy 1116, 1121, 1123 Series	
5.9 10	Wakefield 680 Series	22	Thermalloy 1130, 1131, 1132 Series	
6	Wakefield 390 Series	24	Staver F5-5C	
6.4	Staver V3-7-224	25	Thermalloy 2227 Series	
6.5 7.5	IERC UP Series	26 - 30	IERC Thermal Links	
8	Staver V1-5	27 — 83	Wakefield 200 Series	
8.1	Staver V3-5	28	Staver F5-5B	
8.8	Staver V3-7-96	34	Thermalloy 2228 Series	
9.5	Staver V3-3	35	IERC Clip Mount Thermal Link	
9.5 10.5	IERC LA Series	39	Thermalloy 2215 Series	
9.8 - 13.9	Wakefield 630 Series	41	Thermalloy 2205 Series	
10	Staver V1-3	42	Staver F5-5A	
11	Thermalloy 6103, 6117 Series	42 — 65	Wakefield 296 Series	
• •	mannand, evec, ever conce	46	Staver F6-5, F6-5L	
	TO-220 Packages *	50	Thermalloy 2225 Series	
		50 — 55	IERC Fan Tops	
1.2	IERC HP3 Series	53	Thermalloy 2211 Series	
5-6	IERC HP1 Series	55	Thermalloy 2210 Series	
5.4 5.5 — 7.5	Staver V3-7-225	56	Thermalloy 1129 Series	
S.5 — 7.5	IERC VP Series	58	Thermalloy 2230, 2235 Series	
7.1	Thermalloy 6070 Series	60	Thermalloy 2226 Series	
8.1	Staver V3-5	68	Staver F1-5	
	t sinks can also be used with TO-220 appropriate hole patterns.	72	Thermalloy 1115 Series	

IERC: 135 W. Magnolia Blvd., Burbank, CA 91502 Staver Co. Inc.: 41-51 N. Saxon Ave., Bay Shore, N.Y. 11706 Thermalloy Inc.: 2021 W. Valley View Lane, Dallas, TX 75234 Wakefield Engineering, Inc.: Audubon Rd., Wakefield, MA 01880

Table 4-2. Heat Sink Selection Guide

^{**}Silicone grease applied to both sides of washer.

PACKAGE	METAL TO METAL	INSULATOR		
	DRY COMPOUND	DRY	COMPOUND	
TO-220	1.2 - 2.0	_	2.1 - 2.6	
TO-66	0.8 - 1.5 0.4 - 0.9	_	1.4 - 1.7	
TO-3	0.05 - 0.2	0.55 - 0.8	0.28 - 0.40	

Table 4-3. Thermal Resistance Case to Heat Sink

Maximum power dissipation is:

$$P_{D(max)} = \frac{200^{\circ}C - 65^{\circ}C}{1.5 + 0.4 + 2.5} = \frac{135}{4.4} = 30.7 \text{ W}$$

Similarly, if the heat sink thermal resistance is required for the following conditions:

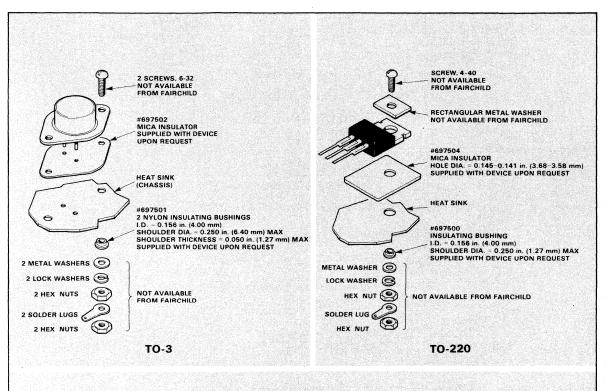
$$\theta_{\text{JC}} = 3^{\circ}\text{C/W}$$
 $T_{\text{A(max)}} = 55^{\circ}\text{C}$
 $T_{\text{J(max)}} = 200^{\circ}\text{C}$ $P_{\text{D}} = 15 \text{ W}$

Anodized aluminum washer with silicone grease

then:

$$\theta_{SA} = \frac{T_{J(max)} - T_{A}}{P_{D}} - (\theta_{JC} + \theta_{CS}) = \frac{200 - 55}{15} - (3 + 0.3) = 9.7 - 3.3 = 6.4 \text{°C/W}$$

For TO-39 devices, mechanically mounted, *i.e.*, without heat sinks, case-to-ambient thermal resistance, θ_{CA} , must be considered. This resistance is typically much greater than θ_{JC} since the mode of heat transfer is by convection and radiation into the surrounding ambient air, rather than by direct conduction. The total resistance to heat transfer out of the chip is the sum of θ_{JA} and θ_{CA} . The sum is junction-to-ambient thermal resistance θ_{JA} . A typical value for a TO-39 device is 175°C/W.


MOUNTING TECHNIQUES

To take full advantage of the power handling capability of power transistors, it is imperative to follow proper mounting procedures — preparation of the mounting surface, application of a thermal compound and use of correct fastening techniques.

In general, the package should be as flat and smooth as the transistor die. For low-power applications, the heat-sink surface is satisfactory if it is flat when held against a straightedge and there are no deep scratches. For high-power applications, a more stringent examination of the surface is required.

Most commercially available heat sinks require spotfacing. Generally, milled or machined surfaces are satisfactory. Furthermore, the surface must be free from all foreign material, film and oxide. Freshly bared aluminum forms an oxide layer in a few seconds. If the heat sink is not used immediately after machining, the mounting area should be polished with No. 000 steel wool and rinsed with alcohol or acetone. This is followed immediately with thermal grease.

Thermal joint compounds are used to fill air voids between mating surfaces to improve contacts. They are a formulation of fine zinc particles in a silicone oil that maintains a grease-like consistency with temperature and time. The compounds are applied in a very thin coat with a spatula or lintless brush and wiped lightly to remove excess material. Or, a minimal amount may be placed around the center of the contact area; during mounting, rotation and pressure forces the compound over the contact area. Excess compound can be removed with acetone or alcohol. For good thermal conduction use a joint lubricant such as Dow Corning DC-340, General Electric 662 or Thermacote by Thermalloy.

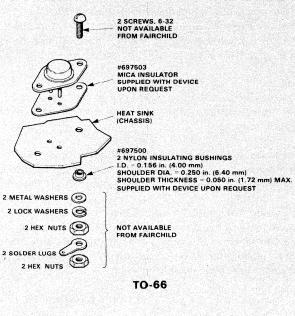


Fig. 4-3. Mounting Hardware

In some applications, it is desirable to electrically insulate the regulator case from the heat sink. Hardware kits for this purpose are commercially available for such packages as the TO-3 and TO-220. They generally consist of a 0.003 to 0.005 inch thick piece of mica or bonded fiberglass to electrically isolate the two surfaces, yet provide a thermal path between them. As expected, the thermal resistance will increase but, as in the direct metal-to-metal joint, some improvement can be realized by using thermal lubricant on each side of the mica.

TO-3 and TO-66

TO-3 and TO-66 packages are mounted as shown in *Figure 4-3*. When tightening the nuts, the screw threads should be free of grease to prevent inconsistent torque readings. Maximum allowable torque should be used to reduce θ_{CS} ; torque ratings of the parts should never be exceeded.

TO-220 (Figures 4-3 and 4-4)

The TO-220 devices can be mounted by bolting, soldering, riveting or clamping. Each method has advantages and disadvantages. Choose the best method for the application. For small-volume applications, either bolting or clamping is the most practical because less investment in equipment is required. For larger volume applications, direct solder or riveting could be more economical. Regardless of method, the following precautions should be observed.

The plastic TO-220 package cannot be subjected to mechanical shock.

Mounting holes must not be oversized.

Proper hardware should be used (see Figure 4-3).

Spacers, insulators and washers should be resistent to cold flow under pressure.

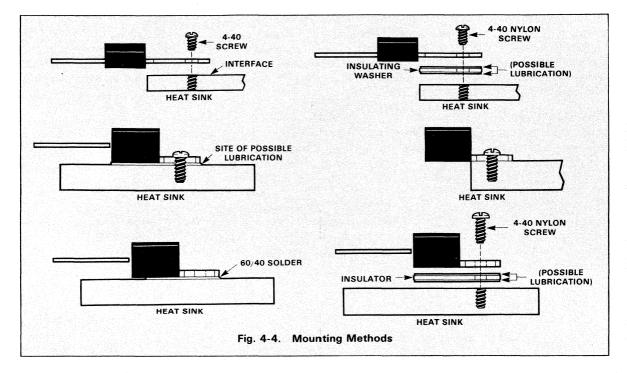
Chassis or heat sink should fit smoothly in the mounting area.

A thermal compound should be used on all unsoldered interfaces between the device and the heat sink.

Bolting

The mounting holes in the TO-220 package are clearance holes for a 4-40 screw, however, a small head diameter screw is required to avoid damage to the plastic package. If a nylon shoulder washer such as FSC part #697500 is used, a 4-40 screw can be used. An 8 in. Ib maximum torque on the mounting screw is sufficient to insure good thermal contact. Do not exceed this pressure or damage to the device may occur. Also do not allow the screw or screwdriver to contact the plastic package. Damage to the plastic package generally indicates damage to the device.

Clamping


TO-220 devices may be attached to heat sinks using spring clamps to apply spring pressure on the tab. These spring-clamp heat sinks are currently available from several manufacturers.

Soldering

The leads and tabs of the TO-220 package may be soldered. The leads should be soldered no closer than 0.065" to the plastic package at a maximum temperature of 260°C for 10 seconds or less. The heat-sink tabs can be soldered using a hot plate or tunnel oven at a maximum temperature of 225°C for 25 seconds. To solder successfully, parts must be cleaned with a solvent such as acetone, freon or alcohol, if necessary. Rosin flux may be used to improve solderability; acid or activated flux are not recommended.

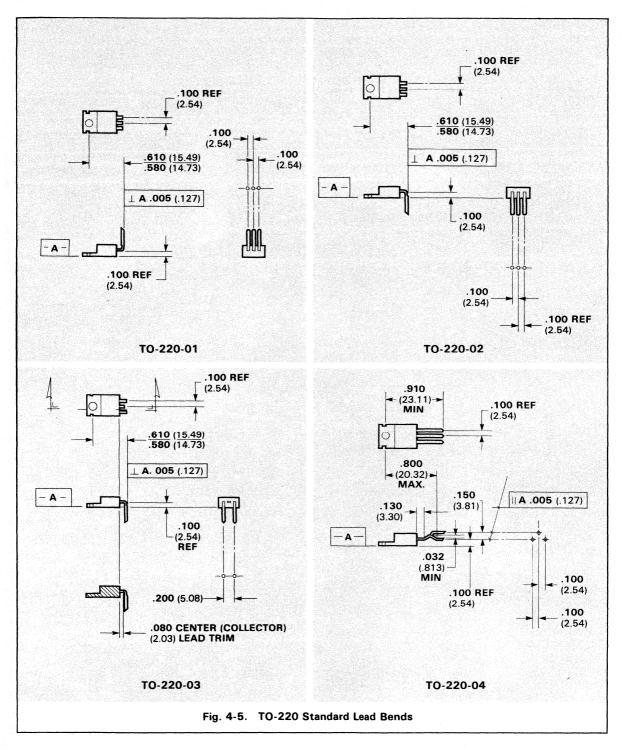
Riveting

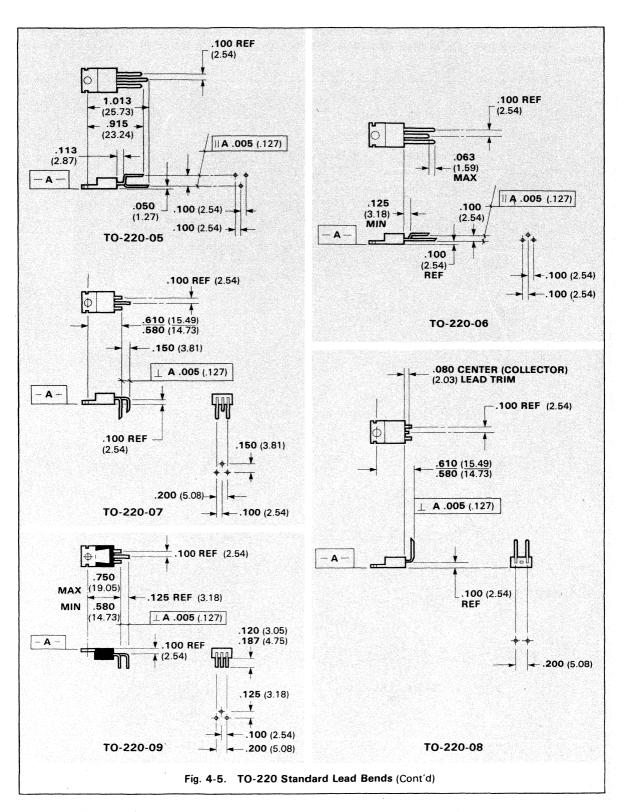
In large-volume operations, riveting is often desirable. The TO-200 has been mounted in large volume using an 1/8-inch brass eyelet rivet. The unit is clinched using an air-operated setting machine. The machine should be adjusted so the force applied (250 lb max) is just sufficient to achieve a good, tight fit without deforming the heat sink or the device tab.

TO-220 LEAD BENDING

Fairchild offers nine standard lead-bend variations (*Figure 4-5*). Special lead bends are available for a nominal tooling cost. The TO-220 leads are designed to allow a moderate amount of twisting and pulling and can withstand a maximum tension of six pounds during forming and assembly. The tension limit is only for circuit assembly. Strain relief should be provided if the unit is to be subjected to lead tension over a long period. Within limits, the leads may also be twisted. However, the leads must be firmly supported between the case and the twist and the twist should not exceed 90° in either direction. Avoid repeated bending and twisting since metal fatigue may occur and cause broken leads. Fairchild bends leads mechanically using special tooling. Leads may be hand formed using needle-nosed pliers; however, the leads must be clamped at a point between the plastic package and the bend to protect the package. The TO-220 device fits the same socket as the TO-66 and can be used as a direct replacement. The collector lead is trimmed and the emitter and base leads are formed as shown in *Figure 4-5* (TO-220-02).

TIPS FOR BETTER HEAT SINKING


When using low dissipation packages such as TO-5 and TO-39, keep lead lengths to a minimum and use the largest possible area of the printed board traces or mounting hardware to provide a heat dissipation path.


When using larger packages, be sure the heat sink surface is flat and free from ridges or high spots. Check the package for burrs or peened-over corners. Regardless of the smoothness and flatness of the package and heat-sink contact, air pockets between them are unavoidable unless a lubricant is used. Therefore, for good thermal conduction, use a thin layer of thermal lubricant.

If it is necessary to electrically insulate the case from the heat sink, use available hardware kits that usually consist of a thin piece of mica or bonded fiberglass to electrically isolate the two surfaces.

If the device is mounted on a heat sink with fins, the most efficient heat transfer takes place when the fin is in a vertical plane, as this type of mounting forces the heat transfer from fin to air in a combination of radiation and convection.

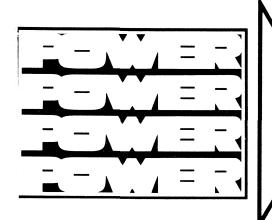
If it is necessary to bend any of the leads, handle them carefully to avoid straining the package. Furthermore, lead bending should be restricted since repeated bending will fatigue and eventually break the leads.

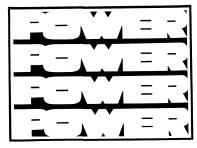
DEVICE SELECTION GUIDES AND CROSS REFERENCE

POWER TRANSISTOR TECHNOLOGY

SAFE OPERATING AREA

POWER TRANSISTOR MANUFACTURING


POWER TRANSISTOR PACKAGING AND HEAT SINKING


POWER TRANSISTOR RELIABILITY

PRODUCT INFORMATION

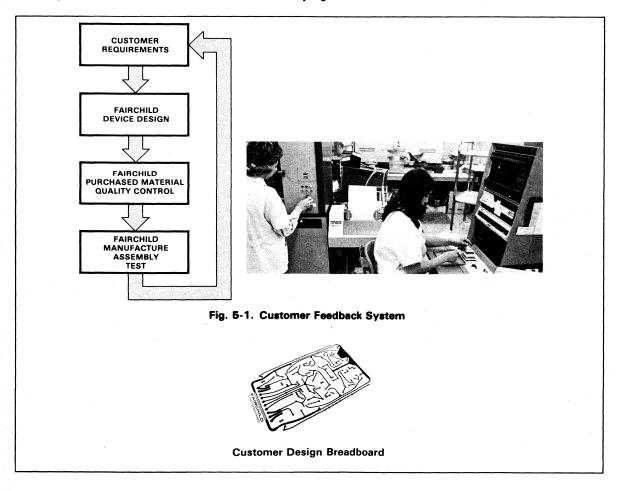
DEFINITIONS OF SYMBOLS AND TERMS

FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS

CHAPTER 5

- Areas of Consideration
- Wafer Manufacture
- Failure Analysis
- Reliability Monitor and Control
- JAN Power Devices

Chapter 5 POWER TRANSISTOR RELIABILITY


INTRODUCTION

There are three basic ingredients in the manufacture of reliable power transistors. First, the device must be designed with the user's applications and reliability requirements in mind. Secondly, the device must be manufactured with the optimum technology for the application. Thirdly, controls must be established to assure maintenance of the quality/reliability levels established in the design of the device. Consideration is given to the reliability influence of each part of the manufacturing and testing cycle with constant feedback from internal reliability monitoring; customer feedback on the results is a vital factor. The Fairchild power reliability concept can be presented as a constant feedback system which begins and ends with the customer. (Figure 5-1).

AREAS OF CONSIDERATION

Device Applications and Reliability

The reliability cycle begins with the customer. His device application, environment for its usage and end-product reliability requirements are major factors in establishing the quality/reliability levels for the power transistor. The customer is the final judge.

Device Design

Inherent component reliability is a function of the product/process design. Most Fairchild power transistor designs are not totally new, but instead are modifications or extensions of existing designs with known performance and reliability characteristics. Three different aspects of the power device significantly affect its reliability.

The Silicon Chip

Impurity profiles determine safe operating area (SOA) trade-offs with other electrical parameters. Fairchild's design-technology capability utilizes multiple epitaxial layers to optimize (SOA) performance while still achieving the desired electrical parameter characteristics. Where severe current distribution problems exist, discrete emitter topology is used to eliminate current crowding and hot spots. The surface influences long term gain and voltage/leakage stability. The metalization determines mechanical integrity and current distribution.

Assembly of the Chip to the Package.

The processes and materials used must preserve the inherent reliability of the chip and be reliable' in themselves to withstand mechanical and electrical stresses.

The Package

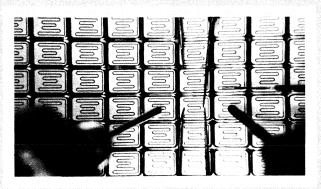
The package must effectively transfer heat from the chip to the outside world and protect the chip during handling and use.

Incoming Quality Control (IQC)

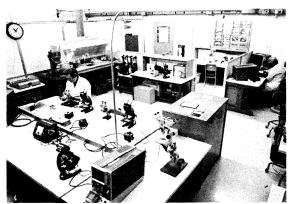
All purchased materials for Fairchild power transistors are controlled through central specification control, product engineering and reliability and quality assurance (R&QA) located in Mountain View. Materials are purchased and inspected per control documents using three IQC methods.

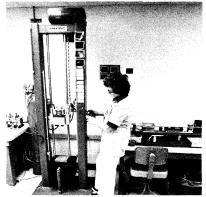
Direct inspection

Functional testing

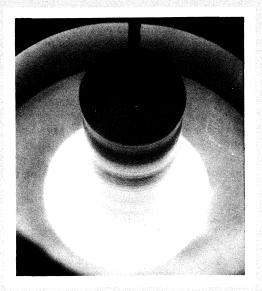

Submission to outside laboratories for chemical and X-ray analysis.

In addition to centralized IQC, each manufacturing facility has a local, fully equipped IQC department. These facilities concentrate on cleanliness, plating quality and functionality. A computer file is made on each vendor's performance and quarterly reports are generated and analyzed.


WAFER MANUFACTURE


All wafers used to fabricate Fairchild power transistors are made at Fairchild. This includes crystal pulling, slicing, polishing and equitaxial layer growth. Fairchild's power multiple-epitaxial designs rely on tight control of thickness and resistivity over a three-inch diameter wafer. As many as three epi-layers are used to achieve the designed impurity profile. Extreme cleanliness is a must in all operations. All critical operations have laminar-flow clean-air hoods directly over the work areas. Wafer fabrication is essentially a series of furnace masking cycles in which geometries are defined and impurities (doping) introduced to form emitter, base and contact regions. Daily controls are maintained on furnace temperatures to within ±1°C. Resistivities (V/I) of diffused layers are recorded on every run. Each masking cycle, which defines a new area of the geometry to be "worked on", has develop check to assure each wafer has received proper exposure and chemical development. When masking is completed, a final check establishes that the proper areas are clean and properly etched. Since operations in the masking area are automated, sampling of runs is very effective in controlling the process.

After masking and diffusion, the metalization process completes wafer manufacture. Fairchild uses filament and electron-beam evaporation techniques to deposit gold, chrome, silver, palladium and aluminum. Deposits are controlled through utilization of automated process sequencing, sloan frequency monitors for thickness control and premeasured metal charges which are depleted during the deposition cycle. Every run is gated through a first optical (1st opt.) inspection before it leaves fab. Cleanliness, mask alignment, metal adherence (front and back) and general workmanship are inspected.



Wafer Probing

IQC Area

Crystal Puller

Wafer Testing

Before the wafers are scribed and broken into dice for assembly onto headers or shipment to a customer as probed dice, they are electrically sorted. Each wafer is automatically probed with 5 to 7 tests to duplicate or correlate the dice to the final product test requirements. Typical probe tests are I_{CBO}, I_{CES}, h_{FE}, V_{CEO(sus)} and BV_{EBO}. Rejected dice are ink marked and later scrapped. A final quality control gate is performed before the probed wafers can be forwarded to assembly.

Device Assembly

After the wafers are scribed and broken, a second optical (2nd opt.) QC inspection is performed. The dice are inspected for post wafer fabrication (handling) damage, as well as for defects which may cause assembly problems such as missing metal in a bonding pad.

Monitors are performed on both assembly equipment and operators. Machines are shut down if defect control limits are exceeded and suspect material is rejected and 100% screened. Key items inspected are die orientation, voids under die, proper bond formation, wirepull strength and cleanliness.

A third optical (3rd opt.) gate is performed prior to final device sealing. At this inspection point, each lot is inspected to a 1.5% AQL. If rejected, the lot is 100% screened by production and resubmitted to QC. Accepted lots are sent to the final seal operation, where the packages are monitored for weld strength and hermeticity (except plastic packages). TO-39 packaged devices are temperature aged, temperature cycled and impact shocked before submission to the test area. TO-3/66/220 packaged devices are temperature aged and I_{SB} (Forward Biased Safe Operating Area) tested prior to test.

Device Testing.

Before shipment, all devices are 100% production tested to the following minimum inspection levels.

Catastrophics(0/S)	0.25% AQL
25°C dc	0.65% AQL
25°C ac	2.5 % AQL
Temperature dc	15/2 LTPD
Mechanical/Visual	1.0% AQL
Solderability	15/2 LTPD
SOA (TO-3/66/220)	1.0% AQL

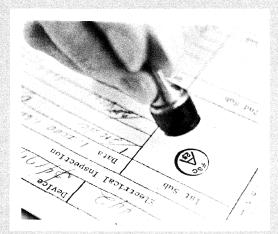
Customers with special requirements are accommodated through an internal specification system. All internal test specifications formatted from customer documents are signed off by QA before they can be issued to the test area.

Device Application

The total reliability effort is completed full cycle with the customer. Operation in the customer application is the final consideration in device reliability. How each device is handled during system assembly by the customer, heat-sunk (mounted) and cooled during operation, and the amount of overload stresses (due to the system malfunction or misuse), greatly impacts the device reliability. Thus the customer's specification requirements, the manufacturer's device design, manufacture, test, the actual circuit into which the device is inserted and the equipment containing that circuit in the field all affect the device and reliability.

FAILURE ANALYSIS

Failure analysis results performed by customers and by Fairchild on returned devices provide one of the most important inputs for consideration in Fairchild's total power reliability concept.


Failures generated by line monitors, life tests and field applications are analyzed to provide corrective action in terms of product design, assembly and testing methods. A scanning electron microscope (SEM) and an Auger electron microscope for chemical analysis are available for inspection of materials. The basic failure modes include the following.

Die Probing

Device Testing

IQC Sign-off

Failure Analysis

Collector-Emitter Shorts

This is the most frequently reported failure mode of power transistors in the field. Collector-toemitter shorts can result from a number of causes but the end result is usually chip overheating, and subsequent alloying of the aluminum metal through the active regions of the chip resulting in a shorted device.

Failure analysis involves:

Looking for foreign contamination which may have shorted the collector-base junction.

Looking for evidence of alloyed aluminum and its location. If failure occurred during forward-bias operation of the emitter-base junction, the failure will usually occur away from the emitter bond. If the emitter-base junction was reverse biased, the alloyed region is more typically adjacent to or under the emitter bond.

Removing the chip and looking for evidence of voids in the die-attach interface, which could have caused excessive chip temperature even though the header temperature remained within acceptable limits.

ISB/ESB/SOA

 I_{SB} is forward-biased second breakdown or "current snapback"; E_{SB} is reverse-biased second breakdown. Each results in chip overheating and alloyed aluminum problems. SOA is safe-operating area and refers to both I_{SB}/E_{SB} in general. For most design considerations, once the SOA of a device is exceeded, catastrophic heating failure occurs immediately.

ICEO/ICBO

This leakage can be caused by any contamination on or near the collector-base junction. The contamination may be wafer related, assembly related or package related. The leakage affects subsequent circuit stages and causes $V_{CE} \times I_{CE}$ to generate excess heat in the power transistor.

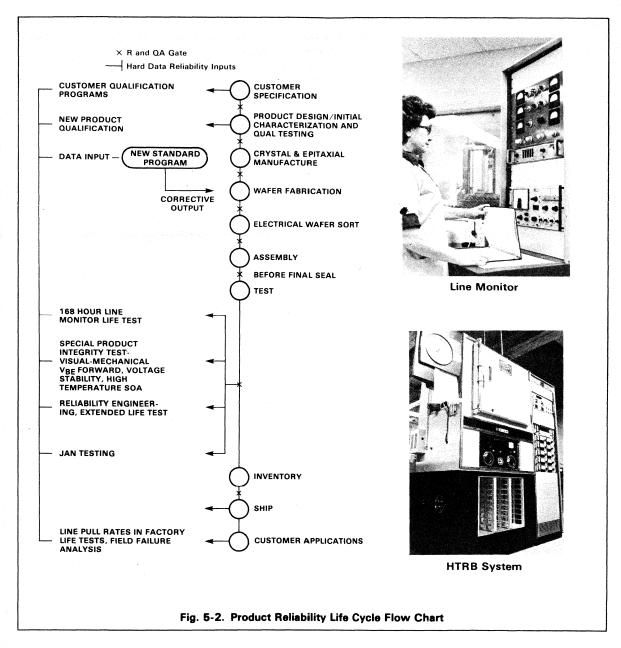
IEBO Drift

This is normally caused by ionic contamination of the wafer oxide. Because of the lower voltage involved, external contamination is usually not a factor. Main concern is loss of low current-gain performance.

hFE Degradation

This is essentially the same as I_{EBO} drift, but bulk degradation, usually near the surface, can occur from high I_{EBO} leakage or if the emitter-base junction is sustained in avalanche.

Opens


Opens can occur in the base or emitter circuits due to wires breaking or becoming detached and in the collector circuit if the die becomes separated from the header. The most common open failures are found in the emitter circuit since it usually has the highest current density.

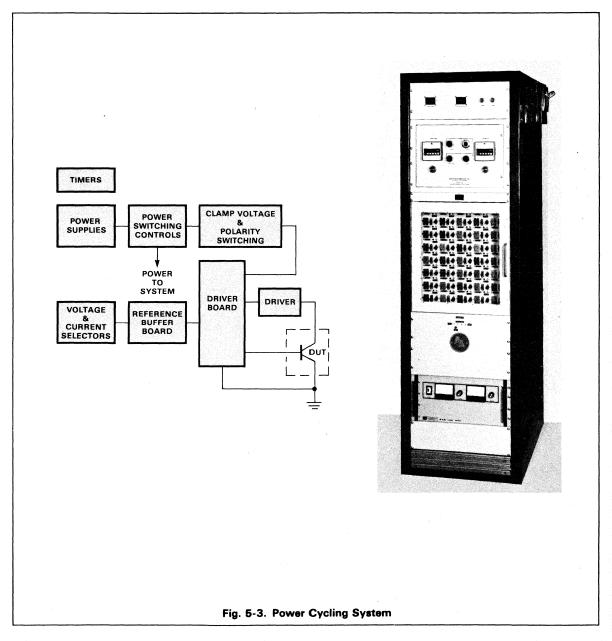
RELIABILITY MONITOR AND CONTROL

Through a central product filing review system, inputs from the areas discussed above are compared with life test data being continually generated. From this review system, necessary actions can be defined, documented and initiated. The reliability program using this review system is called the *new standard* program. The new standard program recognizes the total reliability concept and results in giving better definition of each product's reliability characteristics to enable the customer to use the product more effectively.

Life Cycle Flow Chart (Figure 5-2)

As part of the new standard program, Fairchild employs a product life-cycle monitor and test system, planned to define control and improve device reliability.

Line Monitors


Line monitors are used to monitor the production line on a weekly basis. These tests are accelerated and targeted to generate 10-20% failures. The following five test monitors are conducted on a routine basis.

High Temperature Reverse Bias Intermittent Operating Life (Power Cycling) High Temperature Storage Temperature Cycling Pressure Pot*

^{*}applies to TO-220 devices only

Power Cycling (Figure 5-3.)

Fairchild has the capability of running power cycling tests under a wide variety of test conditions. The power cycle system utilizes unique circuitry for obtaining any ΔT_C . Base-to-emitter voltage in a transistor consists of the forward diode drop, which decreases at about 2 mV per °C, and the IR drop due to the emitter current and the bulk resistance of the silicon which increases at a rate of about 0.7% per °C. Consequently the base-to-emitter voltage is a reasonably accurate measure of junction temperature. As each device under test heats up with the application of emitter current and, as the base-to-emitter voltage lowers to a preselected reference voltage, the collector voltage for each device is lowered to maintain the V_{BE} and the junction temperature at a constant level. This means that any given case temperature can be maintained for any length of time within device limitations.

Reliability Engineering Extended Life Testing

Figure 5-4 gives recent failure rates experienced on the various package types for the indicated stress condition. This data is used extensively to improve process control. For example, high-temperature reverse-bias results from testing a Planar* chip in a TO-5 package are used as indicators of similarly processed products. Fairchild has a selection of basic Planar chips in TO-5 packages. By using line monitor results on each individual product line, common factors can be eliminated, and unique problem areas quickly defined. Figure 5-5 indicates Fairchild's current reliability program.

	METAL CAN POWER				
STRESS TEST	CONDITIONS	STRESS UNITS	FAILURE (RATES)*		
Intermittent Operating Life (IOPL) TO-3	ΔT _C = 53°C P = 20 W, t _{on} = 35 s VCE = 7 V, t _{off} = 5 min.	34,600/wk. Device Cycles Line Monitor Lot Data	(.71)		
(IOPL) TO-5	ΔT _C = 35°C P = 600 mW, t _{on} = 2 min. V _{CC} = 20 V, t _{off} = 2 min.	250,000/wk. Device Cycles Line Monitor Lot Data	(1.23)		
High Temperature Reverse Bias (HTRB)	T _A = 150°C V _{CE} = 80% rated voltage	140,000 Device Hours Line Monitor Lot Data	(2.62)		
High Temperature Storage (HTS)	T _A = 200°C	7.012x10 ⁶ Dev. Hours Line Monitor Lot Data	(.29)		
Temperature Cycle	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	17,500 Device Cycles	(4.0)		
Operating Life (OPL) TO-5	P = 600 mW	140,000 Device Hours Line Monitor Lot Data	(1.93)		

^{*}Failures defined as inoperatives and degradation greater than specification limit +20%. Failure rates are best estimate, % per 1000 hours (cycles).

PLASTIC POWER

STRESS TEST	CONDITIONS	STRESS UNITS	FAILURE (RATES)*
Intermittent Operating Life (IOPL)	ΔT _C = 90°C P = 0.8 W, t _{on} = 45 s V _{CE} = 8 V, t _{off} = 90 s	2.1x10 ⁶ cycles/week (100% Line Monitor Lot Data)	10% at 9,255 cycles
High Temperature $T_C = 150^{\circ}C$ Reverse Bias (HTRB) $V_{CE} = 80\%$ rated voltage 4.		4,320 Device Hours	0
Wet High Temperature T _A = 85°C Reverse Bias (WHTRB) RH = 85%		17,336 Device Hours	0
High Temperature Storage (HTS)	T _A = 150°C	1x10 ⁶ Device Hours	(.37)
Temperature Cycle	$T_A = -40^{\circ}C \text{ to } +100^{\circ}C$	12,500 Device Cycles	Four Failures
Temperature Shock	T _A = 0 to +100°C	2,500 Device Cycles	0
Moisture Resistance	T _A = 40°C RH = 95%	3,000 Device Hours	0
Pressure Pot	T _A = 138°C P = 15 psi t = 4 hours	4,000 Device Hours	Two Failures

^{*}Where applicable, actual results are stated where data is insufficient to project meaningful failure rates. Failures defined as inoperatives. Failure rates are best estimate, % per 1000 hours (cycles).

Fig. 5-4. Extended Life Test Data

^{*}Planar is a patented Fairchild process.

TEST	TO-3	TO-66	TO-5	TO-220
High Temperature Storage T _A = 200°C (MIL-STD-750, Method 1031) Readout at 0, 168, 500, 1000 Hours	х	×	×	X
Intermittent Operating Life (MIL-STD-750, Method 1036) $\Delta T_C = 90^{\circ}C$ Readouts at 0, 5K, 10K, 15K, 20K Cycles	х	×	×	
Intermittent Operating Life ΔT _C = 100°C Readouts at 1, 5K, 10K, 20K Cycles				×
High Temperature Reverse Bias TA = 150°C, 80% BV _{CEO} Readouts at 0, 168, 500, 1000 Hours	Х	×	x	X
Temperature Cycling -65°C to +200°C (MIL-STD-750, Method 1051, Cond. C) Readouts at 0, 25 Cycles Hermiticity (1 x 10 ⁻⁷)	X	X	x	
Steady State Operating Life T _J = 187.5°C ± 12.5°C (MIL-STD-750, Method 1026) Readouts at 0, 168, 500, 1000 Hours	×	х	х	
Constant Acceleration F = 20K g 1 Min. Ea. 6 Axis (MIL-STD-750, Method 2006)	x	×	х	
Impact Shock 1500 g x 5 Blows (MIL-STD-750, Method 2016)	X	×	×	
Vibration, Variable Frequency 10 g (MIL-STD-750, Method 2056)	X	×	×	
Wet HTRB T _A = 85°C, RH = 80% BV _{CEO} Readouts at 0, 168, 500, 1000 Hours				х
Temperature Cycling -40°C to +150°C Readouts at 0, 25 Cycles				х
Pressure Pot T _A = 123°C ± 2°C 15 PSI, 4 Hours				X
Shelf Life T _A = 25°C Readouts at 0, 1K, 2K, 10K Hours				X

Fig. 5-5. Reliability Program 1976

JAN POWER DEVICES

Fairchild power devices have the capability of meeting JAN performance criteria when subjected to the rigid requirements of JAN military specifications. The chart in *Figure 5-6* shows typical JAN acceptance testing.

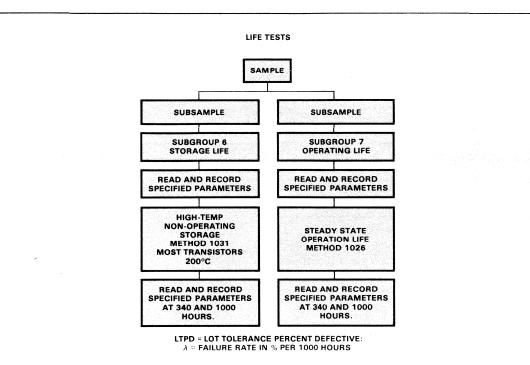
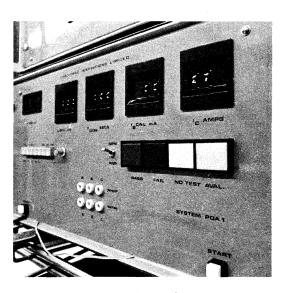
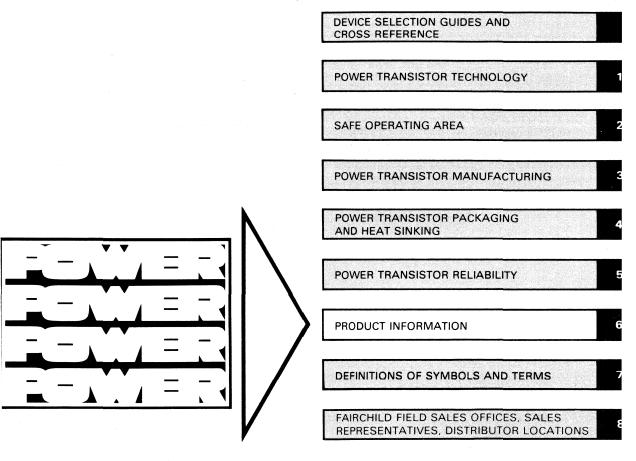



Fig. 5-6. Typical JAN Acceptance Testing

Voltage-Monitoring System for JAN Devices


SAMPLE SUBGROUP 1 **SUBGROUP 2** SUBGROUP 3 SUBGROUP 4 ATMOSPHERIC SERIES PHYSICAL DIMENSIONS **DYNAMIC SERIES** SALT ATMOSPHERE METHOD 2066 **METHOD 1041 VERIFICATION OF** PHYSICAL DIMENSIONS **READ AND RECORD READ AND RECORD** SPELLED OUT IN SPECIFIED PARAMETERS SPECIFIED PARAMETERS **READ AND RECORD PART DRAWING** SPECIFIED PARAMETERS **TEMP CYCLING** SHOCK METHOD 1051, COND. C **METHOD 2016 UNITS ARE PLACED IN VISUAL INSPECTION** 10 CYCLES, -65/200°C. 1500 g 0.5 m 5 BLOWS IN EACH OF 6 ATMOSPHERE OF HIGH ≥ 30 MIN EACH EXTREME SALT CONCENTRATE AT 35°C FOR 24 HOURS **≤ 15 SEC TRANSFER TIME ORIENTATIONS** THERMAL SHOCK **READ AND RECORD** VIBRATION, VARIABLE FREQUENCY SUBGROUP 1 A SPECIFIED PARAMETERS METHOD 1056, SOLDERABILITY COND. B 5 CYCLES **METHOD 2026** METHOD 2056 IN LIQUID 0-100°C; **JUNITS WHICH COMPLETE** 20 Gs, 2000 cps **15 EACH EXTREME** SUBGROUP 1 GO TO THIS 4 CYCLES ≥ 4 MIN SUBGROUP) IN EACH OF 3 **ORIENTATIONS TERMINAL STRENGTH** METHOD 2036, COND. E VISUAL INSPECTION **(UNITS WHICH COMPLETE** CONSTANT SUBGROUP 1A GO TO THIS **ACCELERATION** SUBGROUP). METHOD 2006 20,000 g IN EACH OF 6 ORIENTATIONS FOR 1 MOISTURE RESISTANCE MINUTE DURATION. **METHOD 1021 TEMP CYCLING** IN CHAMBER WITH **READ AND RECORD RELATIVE HUMIDITY 98%** SPECIFIED PARAMETERS **EXTREMES PER MIL SPEC;** E.G., 25-65°C. 24 HOURS EACH,

10 CYCLES

[
READ AND RECORD
SPECIFIED PARAMETERS

ENVIRONMENTAL TESTS

Fig. 5-6. Typical JAN Acceptance Testing (Cont'd)

NPN SILICON

2N3054

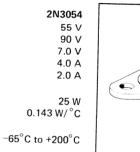
DESIGNED FOR INTERMEDIATE POWER APPLICATIONS IN INDUSTRIAL AND COMMERCIAL EQUIPMENT

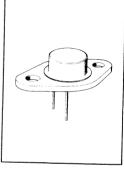
- 25 W DISSIPATION AT 25°C CASE
- 4.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 55 V MINIMUM V_{CFO}

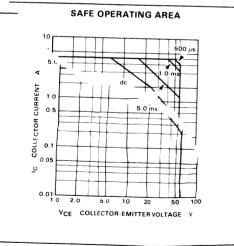
ABSOLUTE MAXIMUM RATINGS (Note 1)

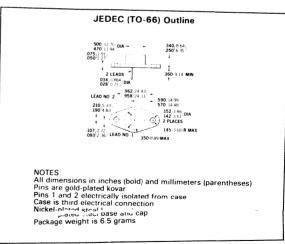
Maximum Volta	ges and Currents
v_{CEO}	Collector to Emitter Voltage
V _{CBO}	Collector to Base Voltage
v_{EBO}	Emitter to Base Voltage
¹ C	Continuous Collector Current
1 _B	Continuous Base Current
Maximum D.	

Maximum Power Dissipation


PD Total Dissipation @ 25°C Case Temperature Derate Linearly from 25°C


Maximum Temperatures

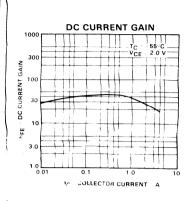

T_J, T_{stg} Storage and Operation Junction Temperatures

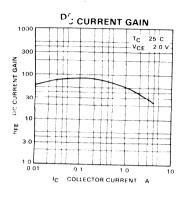

Thermal Characteristics

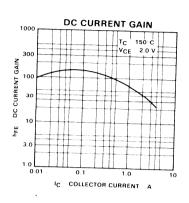
 $R_{ heta JC}$ Thermal Resistance, Junction to Case

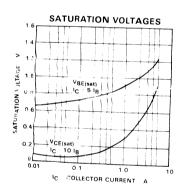
7.0°C/W

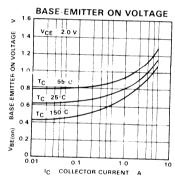
FAIRCHILD • 2N3054

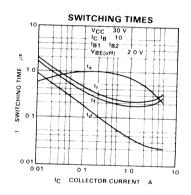

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

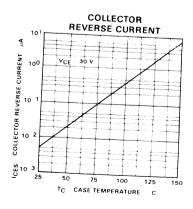

SYMBOL	CHARACTERISTIC	2N	3054	UNIT	TEST CONSTITUTE
STIVIBUL	MIN MAX	UNIT	TEST CONDITIONS		
FF CHARACT	ERISTICS				
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	55		V .	I _C = 100 mA, I _B = 0
V _{CER(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		v	$I_{C} = 100 \text{ mA}, R_{BE} = 100 \Omega$
CEO	Collector Cutoff Current		0.5	mA	V _{CE} = 30 V, I _B = 0
CEX	Collector Cutoff Current		1.0 6.0	mA mA	$V_{CE} = 90 \text{ V}, V_{BE} = -1.5 \text{ V}$ $V_{CE} = 90 \text{ V}, V_{BE} = -1.5 \text{ V}, T_{C} = 150^{\circ}$
¹ EBO	Emitter Cutoff Current		1.0	mA	V _{EB} = 7.0 V, I _C = 0
N CHARACTE	RISTICS				
hFE	DC Current Gain (Note 1)	25 5.0	150		I _C = 500 mA, V _{CE} = 4.0 V I _C = 3.0 A, V _{CE} = 4.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.0 6.0	V V	I _C = 500 mA, I _B = 50 mA I _C = 3.0 A, I _B = 1.0 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.7	V	I _C = 500 mA, V _{CE} = 4.0 V
YNAMIC CHA	RACTERISTICS	•			
h _{fe}	Small Signal Current Gain	25	180		I _C = 100 mA, V _{CE} = 4.0 V, f = 1.0 kHz
fhfe	Common-Emitter Cutoff Frequency	30		kHz	I _C = 100 mA, V _{CE} = 4.0 V

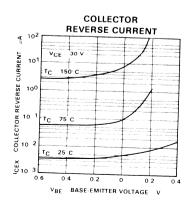

NOTE: 1. Pulse condition; Length = $300\mu s$, Duty Cycle = 2%.


•


TYPICAL ELECTRICA L CHARACTERISTICS







NPN SILICON

2N3055

DESIGNED FOR GENERAL PURPOSE AMPLIFIER AND SWITCHING APPLICATIONS

- 115 W DISSIPATION AT 25°C CASE
- 15 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- DC CURRENT GAIN SPECIFIED TO 10 A

ABSOLUTE MAXIMUM RATINGS (Note 1)

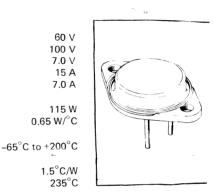
Maximum Voltages and Currents

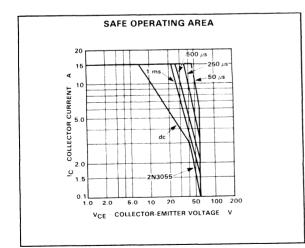
Collector to Emitter Voltage **VCEO** Collector to Base Voltage **V**СВО Emitter to Base Voltage **VEBO** Continuous Collector Current 1_C

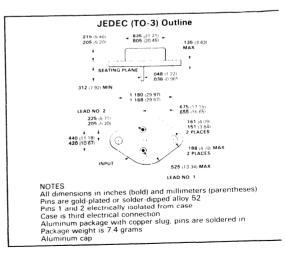
Continuous Base Current I_{B}

Maximum Power Dissipation

Total Dissipation @ 25°C Case Temperature P_{D} Derate Linearly from 25°C

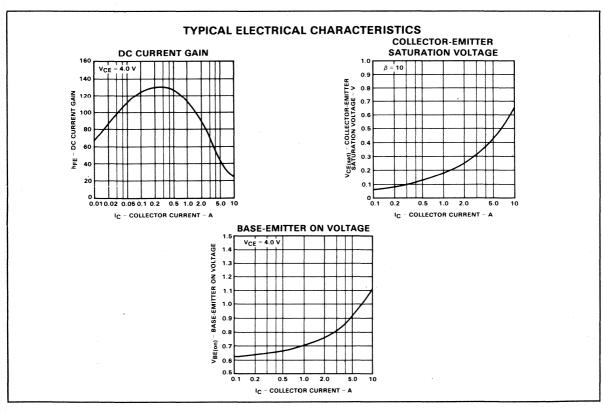

Maximum Temperatures


Storage and Operation Junction Temperatures T_J , T_{stg}


Thermal Characteristics

Thermal Resistance, Junction to Case $R_{\theta}JC$ Tp

Maximum Pin Temperature (Soldering, 10 s)



FAIRCHILD • 2N3055

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	011.0	2N:	3055	UNIT	7507 001101710110
STMBOL	CHARACTERISTIC	MIN	MAX		TEST CONDITIONS
F CHARAC	TERISTICS				
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		V .	I _C = 200 mA, I _B = 0
VCER(sus)	Collector-Emitter Sustaining Voltage (Note 1)	70		V	I_C = 200 mA, R_{BE} = 100 Ω
^I CEO	Collector Cutoff Current		0.7	mA	V _{CE} = 30 V, I _B = 0
			5.0	mA	V _{CE} = 100 V, V _{BE} = -1.5 V
CEX	Collector Cutoff Current		30	mA	$V_{CE} = 100 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$
I _{EBO}	Emitter Cutoff Current		5.0	mA	V _{EB} = 7.0 V, I _C = 0
N CHARACT	ERISTICS				
hFE	DC Current Gain (Note 1)	5.0			I _C = 10 A, V _{CE} = 4.0 V
"FE		20	70		$I_C = 4.0 \text{ A}, V_{CE} = 4.0 \text{ V}$
Vary	Collector-Emitter Saturation Voltage (Note 1)	1.1		V	I _C = 4.0 A, I _B = 400 mA
VCE(sat)	Contestor Environ Saturation Voltage (Note 1)	8.0		V	I _C = 10 A, I _B = 3.3 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.8	٧	I _C = 4.0 A, V _{CE} = 4.0 V
COND BRE	AKDOWN		·		
l _{S/b}	Second Breakdown Collector Current	2.5		Α	t = 1.0s (non repetitive),
.2\p	with base forward biased	2.5			V _{CE} = 40 V
YNAMIC CH	ARACTERISTICS				
h _{fe}	Small Signal Current Gain	15	120		I _C = 10 A, V _{CE} = 4.0 V, f = 1.0 kHz
fhfe	Small Signal Cutoff Frequency	10		kHz	I _C = 1.0 A, V _{CF} = 4.0 V

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

2N3055SD

NPN SILICON

DESIGNED FOR SERIES AND SHUNT REGULATORS POWER-SWITCHING CIRCUITS AND SOLENOID DRIVER APPLICATIONS IDEAL FOR A BROAD RANGE OF INDUSTRIAL AND COMMERCIAL USES

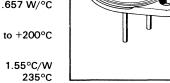
- 115 W DISSIPATION AT 25°C CASE
- 15 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- SOA (60 V, 1.95 A) GUARANTEED
- EQUIVALENT SINGLE DIFFUSED 2N3055

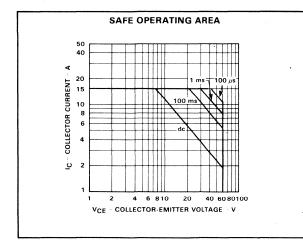
ABSOLUTE MAXIMUM RATINGS

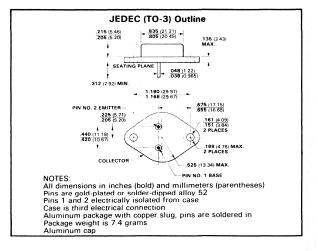
Maximum Voltages and Currents

VCE	Collector to Emitter Voltage	60 V
V _{CB}	Collector to Base Voltage	100 V
V _{EB}	Emitter to Base Voltage	7 V
ار	Continuous Collector Current	15 A
ΙΒ̈́	Continuous Base Current	7 A

Maximum Power Dissipation


P_{D}	Total Dissipation @ 25°C Case Temperature	115 W
	Derate Linearly from 25°C	.657 W/°C


Maximum Temperatures


T _J , T _{stg}	Storage and Operating Junction Temperatures	-65°C to +200°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case
Tp	Maximum Pin Temperature (Soldering, 5 s)

FAIRCHILD • 2N3055SD

SYMBOL	CHARACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
F CHARACT	ERISTICS				
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		V	$I_C = 200 \text{ mA}, I_B = 0$
V _{CER(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	70		V	I_C = 200 mA, R_{BE} = 100 Ω
V _{CEX(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	90		V	$I_{C} = 100 \text{ mA, } V_{BE(off)} = -1.5 \text{ V}$
^I CEO	Collector Cutoff Current		0.7	mA	V _{CE} = 30 V, I _B = 0
ICEX	Collector Cutoff Current		5.0 30	mA	$V_{CE} = 100 \text{ V}, V_{BE} = -1.5 \text{ V}$ $V_{CE} = 100 \text{ V}, V_{BE} = -1.5 \text{ V}, T_{C} = 150 ^{\circ}\text{C}$
I _{EBO}	Emitter Cutoff Current		5.0	mA	V _{EB} = 7.0 V, I _C = 0
N CHARACTE	RISTICS				
h _{FE}	DC Current Gain (Note 1)	20 5.0	70		$I_C = 4.0 \text{ A}, V_{CE} = 4.0 \text{ V}$ $I_C = 10 \text{ A}, V_{CE} = 4.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.1 8.0	V	I _C = 4.0 A, I _B = 0.4 A I _C = 10 A, I _B = 3.3 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.8	٧	I _C = 4.0 A, V _{CE} = 4.0 V
COND BREA	KDOWN				
I _{s/b}	Second Breakdown Collector Current with Base Forward Biased	1.95		Α	t = 1.0 s (non-repetitive) V _{CE} = 60 V
NAMIC CHA	RACTERISTICS				
f _T	Current-Gain-Bandwidth Product	800		kHz	I _C = 1.0 A, V _{CE} = 4.0 V, f = 0.4 MHz
					4

10

15

120

 $I_C = 1.0 \text{ A}, V_{CE} = 4.0 \text{ V}$

 $I_C = 1.0 \text{ A, V}_{CE} = 4.0 \text{ V, f} = 1 \text{ kHz}$

kHz

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

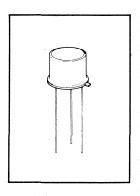
Small Signal Current Gain

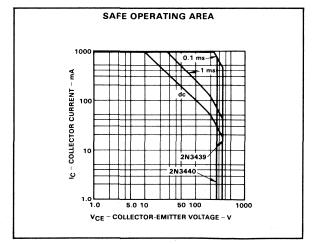
f_{hfe}

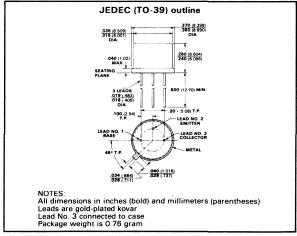
h_{fe}

Common Emitter Small Signal Cutoff Frequency

NPN SILICON

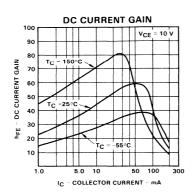

2N3439 2N3440

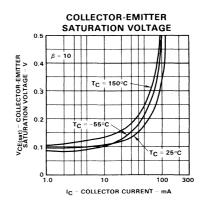

HIGH VOLTAGE POWER TRANSISTORS DESIGNED FOR USE IN CONSUMER AND INDUSTRIAL LINE-OPERATED APPLICATIONS

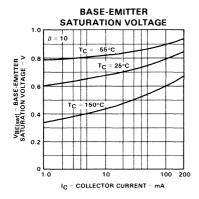

- 10 W DISSIPATION AT 25°C CASE
- 1.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 350 V MINIMUM V_{CEO} (2N3439)

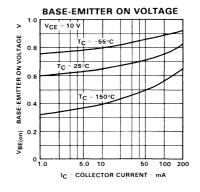
ABSOLUTE MAXIMUM RATINGS (Note 1)

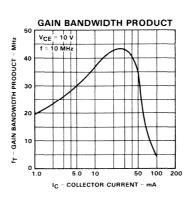
Maximum Vo	Itages and Currents	2N3439	2N3440
V _{CEO}	Collector to Emitter Voltage	350 V	250 V
V _{CBO}	Collector to Base Voltage	450 V	300 V
VEBO	Emitter to Base Voltage	7.0 V	7.0 V
Ic	Continuous Collector Current	1.0 A	1.0 A
I _B	Continuous Base Current	0.5 A	0.5 A
Maximum Pov	ver Dissipation		
PD	Total Dissipation @ 25°C Case Temperature		10 W
_	Derate Linearly from 25°C		0.57 W/°C
Maximum Ter	nperatures		
T_J, T_{sta}	Storage and Operation Junction Temperatures	-65°C	C to +200°C
Thermal Char	acteristics		
$R_{ heta}JC$	Thermal Resistance, Junction to Case		17.5°C/W


FAIRCHILD • 2N3439 • 2N3440


SYMBOL	CHARACTERISTIC	2N3	439	2N	3440			
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARAC	TERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	350		250		V	I _C = 50 mA, I _B = 0	
CEO	Collector Cutoff Current		20		50	μΑ μΑ	V _{CE} = 300 V, I _B = 0 V _{CE} = 200 V, I _B = 0	
ICEX	Collector Cutoff Current		500		500	μΑ μΑ	V _{CE} = 450 V, V _{BE} = -1.5 V V _{CE} = 300 V, V _{BE} = -1.5 V	
СВО	Collector Cutoff Current		20		20	μΑ μΑ	V _{CB} = 360 V, I _E = 0 V _{CB} = 250 V, I _E = 0	
EBO	Emitter Cutoff Current		20		20	μА	V _{EB} = 6.0 V, I _C = 0	
N CHARACT	ERISTICS			-				
hFE	DC Current Gain (Note 1)	30 40	160	40	160		$I_C = 2.0 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_C = 20 \text{ mA}, V_{CE} = 10 \text{ V}$	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		0.5		0.5	V	I _C = 50 mA, I _B = 4.0 mA	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		1.3		1.3	V	I _C = 50 mA, I _B = 4.0 mA	
YNAMIC CH	ARACTERISTICS	*						
f⊤	Current-Gain-Bandwidth Product	15		15		MHz	I _C = 10 mA, V _{CE} = 10 V, f = 5.0 MH	
C _{ob}	Output Capacitance		10		10	рF	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz	
Cib	Input Capacitance		75		75	pF	V _{EB} = 5.0 V, I _C = 0, f = 1.0 MHz	
h _{fe}	Small Signal Current Gain	25		25			tc = 5.0 mA, VcF = 10 V, f = 1.0 kl	


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


FAIRCHILD • 2N3439 • 2N3440


TYPICAL ELECTRICAL CHARACTERISTICS

NPN SILICON

2N3713 2N3714 2N3715 2N3716

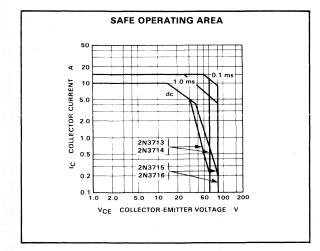
DESIGNED FOR MEDIUM-SPEED SWITCHING AND AMPLIFIER APPLICATIONS

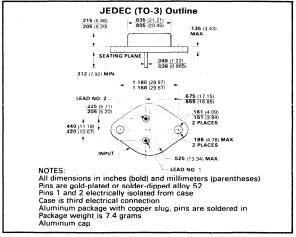
- 150 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS 2N3789 THRU 2N3792

ABSOLUT	E MAXIMUM	RATINGS	(Note	1)
---------	-----------	---------	-------	----

Maximum Vo	Itages and Currents	2N3713	2N3714	2N3715	2N3716
VCEO	Collector to Emitter Voltage	60 V	80 V	60 V	80 V
VCBO	Collector to Base Voltage	80 V	100 V	80 V	100 V
VEBO	Emitter to Base Voltage	7.0 V	7.0 V	7.0 V	7.0 V
IC	Continuous Collector Current	10 A	10 A	10 A	10 A
ΙΒ	Continuous Base Current	4.0 A	4.0 A	4.0 A	4.0 A
Maximum Po	wer Dissipation				

P_D Total Dissipation @ 25° C Case Temperature
Derate Linearly from 25° C


Assimum Tomporatures


Maximum Temperatures

T_J, T_{stg} Storage and Operation Junction Temperatures

Thermal Characteristics

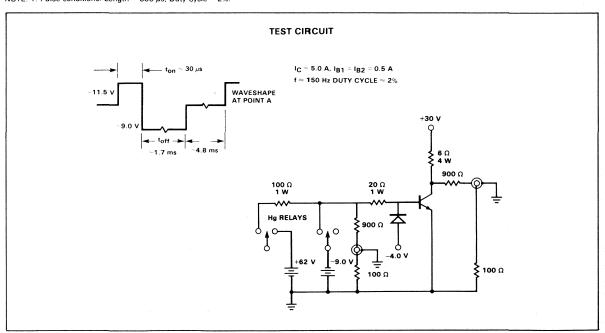
 $R_{ heta JC}$ Thermal Resistance, Junction to Case

150 W

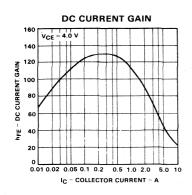
0.86 W/°C

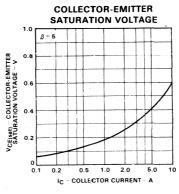
1.17°C/W

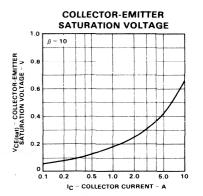
-65°C to 200°C

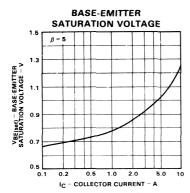

FAIRCHILD • 2N3713 • 2N3714 • 2N3715 • 2N3716

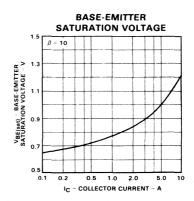
ELECTRICAL CHARACTERISTICS (25° C Case Temperature unless otherwise noted)

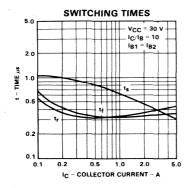

	CHARACTERISTICS (25°C Case	,	3713		3714		3715	2N	3716		
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
FF CHARAC	TERISTICS								1		
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	60		80		60		80		٧	I _C = 200 mA, I _B = 0
CEO	Collector Cutoff Current		0.7		0.7		0.7		0.7	mA mA	V _{CE} = 30 V, I _B = 0 V _{CE} = 40 V, I _B = 0
ICEX	Collector Cutoff Current		1.0		1.0		1.0		1.0	mA mA mA	V _{CE} = 80 V, V _{BE} = -1.5 V V _{CE} = 100 V, V _{BE} = -1.5 V V _{CE} = 60 V, V _{BE} = -1.5 V, T _C = 150°C
			1,		10		-		10.	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
¹ EBO	Emitter Cutoff Current		1.0		1.0		1.0		1.0	mA	V _{EB} = 7.0 V, I _C = 0
N CHARACT	ERISTICS										
hFE	DC Current Gain (Note 1)	5.0 25 15	75	5.0 25 15	75	5.0 50 30	150	5.0 50 30	150		$I_C = 10 \text{ A}, \ V_{CE} = 4.0 \text{ V}$ $I_C = 1.0 \text{ A}, \ V_{CE} = 2.0 \text{ V}$ $I_C = 3.0 \text{ A}, \ V_{CE} = 2.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.0 4.0		1.0 4.0		0.8 4.0		0.8 4.0	>	I _C = 5.0 A, I _B = 500 mA I _C = 10 A, I _B = 2.0 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		2.0 4.0		2.0 4.0		1.8 4.0		1.8 4.0	V V	I _C = 5.0 A, V _{CE} = 2.0 V I _C = 10 A, V _{CE} = 4.0 V
YNAMIC CH	ARACTERISTICS			,			,				
Cob	Output Capacitance		250		250		250		250	pF	$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 0.1 \text{ MHz}$
lhe l	Magnitude of Common Emitter	40		4.0		4.0		4.0			I _C = 500 mA, V _{CE} = 10 V,

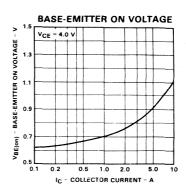

Cop	Output Capacitance		250		250		250		250	рF	$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 0.1 \text{ MHz}$
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	4.0		4.0		4.0		4.0			I _C = 500 mA, V _{CE} = 10 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	25	250	25	250	25	250	25	250		I _C = 500 mA, V _{CE} = 10 V, f = 1.0 kHz
^f hfe	Small Signal Cutoff Frequency	30		30		30		30		kHz	I _C = 500 mA, V _{CE} = 10 V


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.



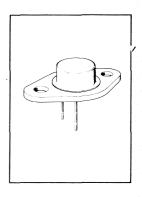

TYPICAL ELECTRICAL CHARACTERISTICS

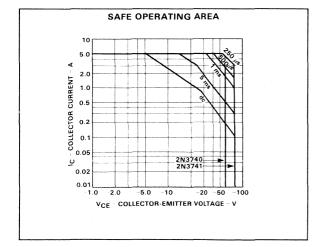


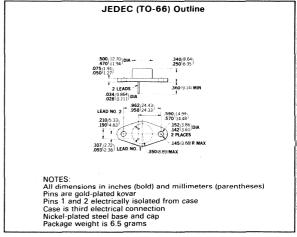


PNP SILICON

2N3740 2N3741

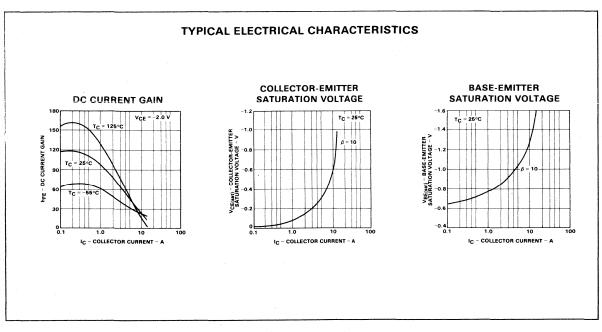

MEDIUM POWER DEVICES, IDEAL FOR USE AS DRIVERS, SWITCHES AND DIRECT REPLACEMENT OF GERMANIUM TRANSISTORS


- 25 W DISSIPATION AT 25°C CASE
- 1.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS 2N3766, 2N3767


ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum V	oltages and Currents
VCEO	Collector to Emitter Voltage
V _{CBO}	Collector to Base Voltage
V_{EBO}	Emitter to Base Voltage
lC	Continuous Collector Current
ΙΒ	Continuous Base Current
Maximum P	ower Dissipation
PD	Total Dissipation @ 25°C Case Temperature
	Derate Linearly from 25°C
Maximum T	emperatures
T_J, T_stg	Storage and Operation Junction Temperatures
Thermal Ch	aracteristics
$R_{ heta JC}$	Thermal Resistance, Junction to Case

2N3740	2N3741
-60 V	-80 V
-60 V	-80 V
-7.0 V	-7.0 V
1.0 A	1.0 A
1.0 A	1.0 A
. (25 W 0.14 W/°C
−65°C 1	to +200°C
	7.0°C/W


FAIRCHILD • 2N3740 • 2N3741

0.44501	011454075510710	2N3	740	2N3	741		TEGT CONDITIONS	
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX ·	UNIT	TEST CONDITIONS	
CHARAC	TERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-60		-80		V	I _C = 100 mA, I _B = 0	
			1.0	1.1		mA	V _{CF} = -40 V, I _B = 0	
CEO	Collector Cutoff Current				1.0	mA.	$V_{CE} = -60 \text{ V}, I_{B} = 0$	
			0.1			mA	V _{CE} = -60 V, V _{BE} = 1.5 V	
					0.1	mA	$V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V}$	
ICEX	Collector Cutoff Current		1.0			mA	$V_{CE} = -40 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$	
					1.0	mA	$V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$	
1	0.11.		0.1			mA	V _{CB} = -60 V, I _E = 0	
СВО	Collector Cutoff Current				0.1	mA	$V_{CB} = -80 \text{ V}, I_{E} = 0$	
I _{EBO}	Emitter Cutoff Current		0.5		0.5	mA	V _{EB} = 7.0 V, I _C = 0	
N CHARACT	ERISTICS							
		40		40			I _C = 100 mA, V _{CE} = -1.0 V	
h	DC Current Gain (Note 1)	30	100	30	100		$I_C = 250 \text{ mA}, V_{CE} = -1.0 \text{ V}$	
h _{FE}	De current dann (Note 1)	20		20			$I_C = 500 \text{ mA}, V_{CE} = -1.0 \text{ V}$	
		10		10			$I_C = 1.0 \text{ A}, V_{CE} = -1.0 \text{ V}$	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-0.6		-0.6	V	I _C = 1.0 A, I _B = 125 mA	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)	1	-1.0		-1.0	V	I _C = 250 mA, V _{CE} = -1.0 V	

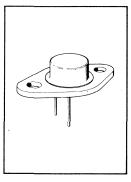
DYNAMIC CHARACTERISTICS

f _T	Current-Gain-Bandwidth Product	4.0		4.0		MHz	I _C = 100 mA, V _{CE} = -10 V, f = 1.0 MHz
C _{ob}	Output Capacitance		100		100	pF	V _{CB} = -10 V, I _E = 0, f = 0.1 MHz
^h fe	Small Signal Current Gain	25		25			$I_C = 50 \text{ mA}, V_{CE} = -10 \text{ V}, f = 1.0 \text{ kHz}$

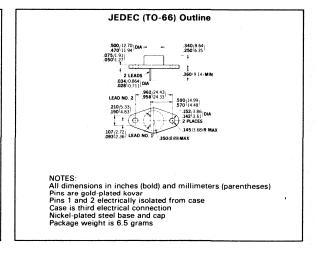
NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

NPN SILICON

2N3766 2N3767

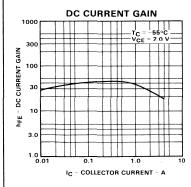

MEDIUM POWER SILICON TRANSISTOR FOR USE IN DRIVER CIRCUITS, SWITCHING AND MEDIUM POWER AMPLIFIERS APPLICATIONS

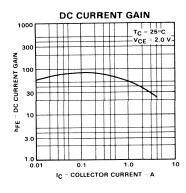
- 20 W DISSIPATION AT 25°C CASE
- 4.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT 2N3740, 2N3741

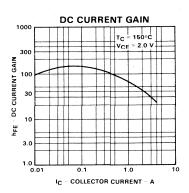

ABSOLUTE MAXIMUM RATINGS (Note 1)

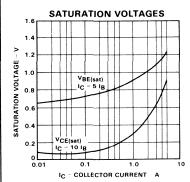
Maximum V	oltages and Currents
VCEO	Collector to Emitter Voltage
V _{CBO}	Collector to Base Voltage
VEBO	Emitter to Base Voltage
lC .	Continuous Collector Current
I _B	Continuous Base Current
Maximum P	ower Dissipation
PD	Total Dissipation @ 25°C Case Temperature
	Derate Linearly from 25°C
Maximum T	emperatures
T_J, T_sta	Storage and Operation Junction Temperatures
Thermal Cha	aracteristics
$R_{ heta}JC$	Thermal Resistance, Junction to Case

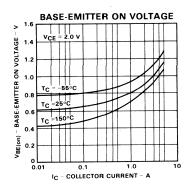
2N3766	2N3767
60 V	80 V
80 V	100 V
6.0 V	6.0 V
4.0 A	4.0 A
2.5 A	2.5 A
	20 W
0	.133 W/°C
-65°C	to 175°C
	7.5°C/W

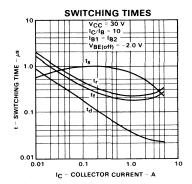

10	250 500 µs + 1								μs		
5.0		+	-	_	 	30	V	H	*	Н	
∢					_		7	Z	7		
1	L					λ		7	V.	Ш	
1.0				dc	5 ms		V	1	N		
£ 1.0		T			1 ms			X			
∂ 0.5					_		V	1		Ħ	
Œ	ļ	+	-		ļ	-	_	V		Н	
₽ .		-	-		-	-	-	4		Н	
0.1					2N37	66	\perp	+	N		
8					2N3	767		Ŧ	•		
0.05		-	-				_	#			
ပ္	 -	+	-		 	\vdash	-+	+	Н	H	
		+	-		 	-	+	+	Н	H	
0.04						1 1			- 1		
0.01	0 2	2.0	5	0 1	0 2	0		50		100	

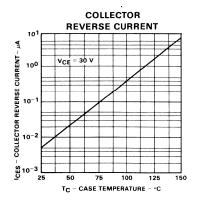


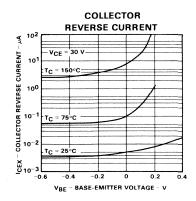

FAIRCHILD • 2N3766 • 2N3767


		2N3	766	2N3	3767	T	TEST CONDITIONS	
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT		
F CHARAC	TERISTICS		•		<u> </u>			
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80		V	I _C = 100 mA, I _B = 0	
ICEO	Collector Cutoff Current		0.7		0.7	mA mA	V _{CE} = 60 V, I _B = 0 V _{CE} = 80 V, I _B = 0	
	Collector Cutoff Current		0.1		0.1	mA mA	V _{CE} = 80 V, V _{BE} = -1.5 V V _{CE} = 100 V, V _{BE} = -1.5 V	
CEX	Conector Cuton Current		1.0		1.0	mA	$V_{CE} = 50 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$ $V_{CE} = 70 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
^I сво	Collector Cutoff Current	fystal satt as	0.1		0.1	mA mA	V _{CB} = 80 V, I _E = 0 V _{CB} = 100 V, I _E = 0	
^I EBO	Emitter Cutoff Current		0.75		0.75	mA	V _{EB} = 6.0 V, I _C = 0	
N CHARACT	ERISTICS							
h _{FE}	DC Current Gain (Note 1)	30 40 20	160	30 40 20	160		I _C = 50 mA, V _{CE} = 10 V I _C = 500 mA, V _{CE} = 5.0 V I _C = 1.0 A, V _{CE} = 5.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)	-	1.0 2.5		1.0 2.5	V	I _C = 500 mA, I _B = 50 mA I _C = 1.0 A, I _B = 100 mA	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.5		1.5	V	I _C = 1.0 A, V _{CE} = 10 V	
YNAMIC CH	ARACTERISTICS							
f _T	Current-Gain- Bandwidth Product	10		10		MHz	I _C = 500 mA, V _{CE} = 10 V	
C _{ob}	Output Capacitance		50		- 50	pF	V _{CB} = 10 V, I _E = 0, f = 0.1 MHz	
h _{fe}	Small Signal Current Gain	40		40			I _C = 100 mA, V _{CE} = 10 V, f = 1.0 kHz	


OTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

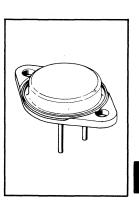


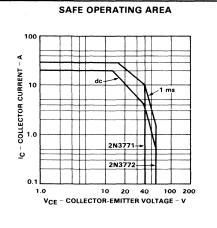


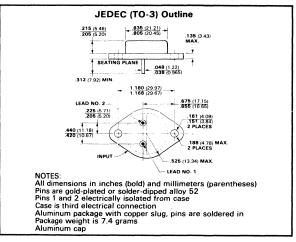


NPN SILICON

2N3771 2N3772

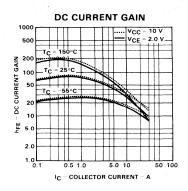

HIGH CURRENT, HIGH POWER DEVICES FOR USE IN AUDIO AMPLIFIERS, SERIES AND SHUNT REGULATOR DRIVER AND OUTPUT STAGES

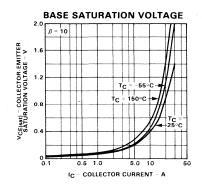

- 150 W DISSIPATION AT 25°C CASE
- 30 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- LOW SATURATION VOLTAGE WITH HIGH BETA

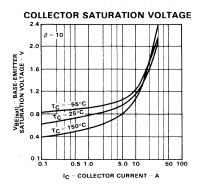

ABSOLUTE MAXIMUM RATINGS (Note 1)

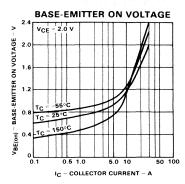
Maximum Vo	oltages and Currents
VCEO	Collector to Emitter Voltage
Vcво	Collector to Base Voltage
VEBO	Emitter to Base Voltage
1C	Continuous Collector Current
Ic	Peak Collector Current
IB	Continuous Base Current
Maximum Po	wer Dissipation
PD	Total Dissipation @25°C Case Temperature
	Derate Linearly from 25°C
Maximum Te	mperatures
Tj, T _{sta}	Storage and Operation Junction Temperatures
Thermal Cha	racteristics
$R_{\theta}JC$	Thermal Resistance, Junction to Case
Tp	Maximum Pin Temperature (Soldering, 5.0 s)

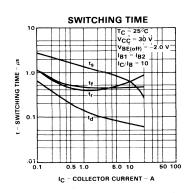
2N3771	2N3772
40 V	60 V
50 V	100 V
5.0 V	5.0 V
30 A	20 A
30 A	30 A
7.5 A	5.0 A
–65°	150 W 0.857 W/° C C to +200° C 1.17° C/W 230° C

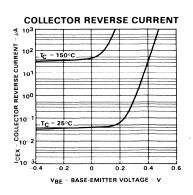

FAIRCHILD • 2N3771 • 2N3772

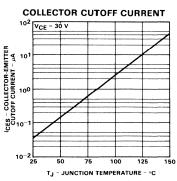

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


SYMBOL	CHARACTERISTIC	2N:	377:1	2N3772		UNIT	TEST CONDITIONS	
STWIBOL	CHARACTERISTIC	MIN MAX MIN MAX		CIVIT	TEST CONDITIONS			
FF CHARACT	ERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		V	I _C = 200 mA, I _B = 0	
ICEO	Collector Cutoff Current		10			mA	$V_{CE} = 30 \text{ V, I}_{B} = 0$	
TCEO	Concetor Gatori Garrent				10	mA	V _{CE} = 50 V, I _B = 0	
			2.0			mA	$V_{CE} = 50 \text{ V}, V_{BE} = -1.5 \text{ V}$	
ICEX	Collector Cutoff Current				5.0	mA	$V_{CE} = 100 \text{ V}, V_{BE} = -1.5 \text{ V}$	
		1	10	- "	10	mA	$V_{CE} = 30 \text{ V}, V_{BE} = -1.5 \text{ V}, T_{C} = 150^{\circ} \text{ C}$	
long	Collector Cutoff Current		2.0			mA	V _{CB} = 50 V, I _E ≈ 0	
ICBO Collector Cutoff Current			-	İ	5.0	mA	V _{CB} = 100 V, I _E = 0	
		5.0			mA	V _{EB} = 5.0 V, I _C = 0		
IEBO Emitter Cutoff Current					5.0	mA	V _{EB} = 7.0 V, I _C = 0	
N CHARACTE	ERISTICS							
	DC Current Gain (Note 1)	15	60				I _C = 15 A, V _{CF} = 4.0 V	
		5.0				1	I _C = 30 A, V _{CE} = 4.0 V	
hFE				15	60		I _C = 10 A, V _{CE} = 4.0 V	
				5.0			I _C = 20 A, V _{CE} = 4.0 V	
-	-		2.0			V	I _C = 15 A, I _B = 1.5 A	
V	Collector-Emitter Saturation Voltage	1	4.0			V	I _C = 30 A, I _B = 6.0 A	
V _{CE(sat)}	(Note 1)				1.4	V	I _C = 10 A, I _B = 1.0 A	
			-		4.0	· v	I _C = 20 A, I _B = 4.0 A	
	B F		2.7			V	I _C = 15 A, V _{CE} = 4.0 V	
VBE(on)	Base-Emitter "On" Voltage (Note 1)				2.2	v	I _C = 10 A, V _{CE} = 4.0 V	
COND BREA	KDOWN							
1-6	Second Breakdown Collector Current	3.75				Α	V _{CE} = 40 V, t = 1.0 s (non-repetitive)	
IS/b	With Base Forward Biased		2.5			Α	$V_{CE} = 60 \text{ V, t} = 1.0 \text{ s (non-repetitive)}$	
E _{S/b}	Second Breakdown Energy With Base Reversed Biased	500		500		mJ	$I_C = 5.0 \text{ A, } V_{BE(off)} = -1.5 \text{ V, L} = 40 \text{ m/s}$ $R_{BE} = 100 \Omega$	
YNAMIC CHA	RACTERISTICS		•					
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	4.0		4.0			I _C = 1.0 A, V _{CE} = 4.0 V, f = 50 kHz	
h _{fe}	Small Signal Current Gain	40		40			I _C = 1.0 A, V _{CF} = 4.0 V, f = 1.0 kHz	


NOTE: 1. Pulse conditions: Length = 300μ s, Duty Cycle = 2%.


FAIRCHILD • 2N3771 • 2N3772





PNP SILICON

2N3789 2N3790 2N3791 2N3792

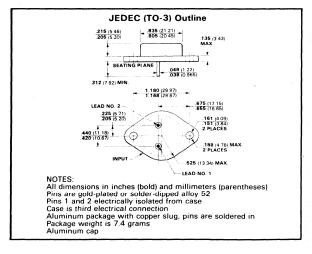
DESIGNED FOR MEDIUM-SPEED SWITCHING AND AMPLIFIER APPLICATIONS

- 150 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS 2N3713 THRU 2N3716

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum Voltages and Currents		2N3789	2N3790	2N3791	2N3792
v_{CEO}	Collector to Emitter Voltage	-60 V	-80 V	-60 V	-80 V
VCBO	Collector to Base Voltage	-60 V	-80 V	-60 V	-80 V
VEBO	Emitter to Base Voltage	-7.0 V	−7.0 V	-7.0 V	-7.0 V
IC .	Continuous Collector Current	10 A	10 A	10 A	10 A
1B	Continuous Base Current	4.0 A	4.0 A	4.0 A	4.0 A
Maximum Po	wer Dissipation				
P _D Total Dissipation @ 25°C Case Temperature					


Maximum Temperatures


T_J, T_{stq} Storage and Operation Junction Temperatures

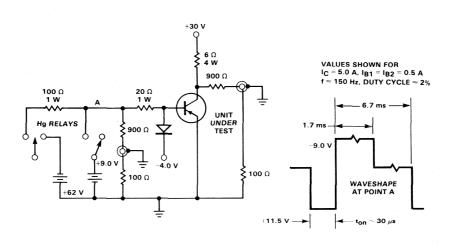
Derate Linearly from 25°C

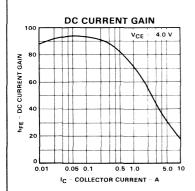
Thermal Characteristics

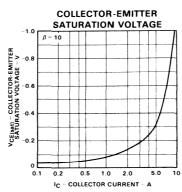
 $R_{ heta JC}$ Thermal Resistance, Junction to Case

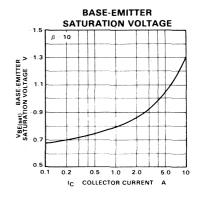
0.86 W/.°C

1.17°C/W

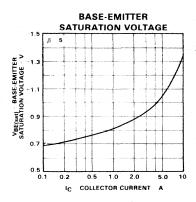

-65°C to 200°C

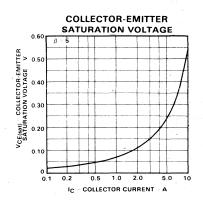

FAIRCHILD • 2N3789 • 2N3790 • 2N3791 • 2N3792

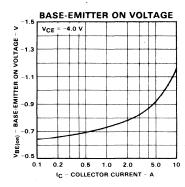

CVMDOL	CHARACTERISTIC	2N3	3789	2N3	2N3790		2N3791		3792		
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARAC	TERISTICS	: - \		·							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-60		-80		-60		-80		٧	I _C = 200 mA, I _B = 0
ICEO	Collector Cutoff Current		10		10		10	_	10	mA mA	V _{CE} = -30 V, I _B = 0 V _{CE} = -40 V, I _B = 0
CEX	Collector Cutoff Current		1.0 5.0		1.0		1.0 5.0		1.0	mA mA mA	VCE = -60 V, VBE = 1.5 V VCE = -80 V, VBE = 1.5 V VCE = -60 V, VBE = 1.5 V, TC = 150°C
					5.0				5.0	mA	$V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$
¹ EBO	Emitter Cutoff Current		5.0		5.0		5.0		5.0	mA	V _{EB} = -7.0 V, I _C = 0
N CHARACT	ERISTICS					<u></u>			1.00		
hFE	DC Current Gain (Note 1)	25 15 4.0	90	25 15 4.0	90	50 30 4.0	150	50 30 4.0	150		I _C = 1.0 A, V _{CE} = -2.0 V I _C = 3.0 A, V _{CE} = -2.0 V I _C = 10 A, V _{CE} = -4.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-1.0 -4.0		-1.0 -4.0		-1.0 -4.0		-1.0 -4.0	V	I _C = 5.0 A, I _B = 0.5 A I _C = 10 A, I _B = 2.0 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-2.0		-2.0		-1.5		-1.5	V .	I _C = 4.0 A, I _B = 0.4 A I _C = 5.0 A, I _B = 0.5 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-2.0 -4.0		-2.0 -4.0		-1.8 -4.0		-1.8 -4.0	V	I _C = 5.0 A, V _{CE} = -2.0 V I _C = 10 A, V _{CE} = -4.0 V
YNAMIC CH	ARACTERISTICS										
C _{ob}	Output Capacitance		500		500		500		500	pF	$V_{CB} = -10 \text{ V}, I_E = 0, f = 0.1 \text{ MHz}$
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	4.0		4.0		4.0		4.0			I _C = 500 mA, V _{CE} = -10 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	25	250	25	250	25	250	25	250		I _C = 500 mA, V _{CE} = -10 V, f = 1.0 kHz
^f hfe	Small Signal Cutoff Frequency	30		30		30		30		kHz	I _C = 500 mA, V _{CE} = -10 V

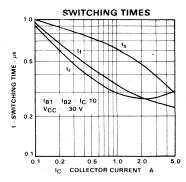

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

TEST CIRCUIT



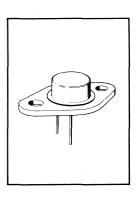


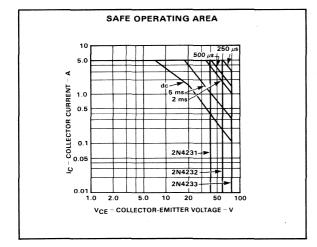



FAIRCHILD • 2N3789 • 2N3790 • 2N3791 • 2N3792

TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd)

NPN SILICON

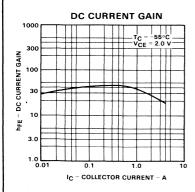

2N4231 2N4232 2N4233

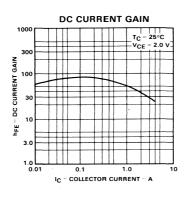

MEDIUM POWER TRANSISTORS DESIGNED FOR DRIVER CIRCUITS, SWITCHING, AND AMPLIFIER APPLICATIONS

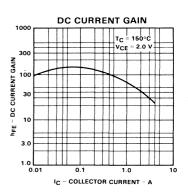
- 35 W DISSIPATION AT 25°C CASE
- 3.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 25 100 hgg @ 1.5 A, 2.0 V

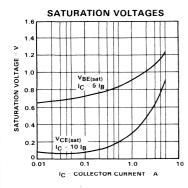
ABSOLUTE MAXIMUM RATINGS (Note 1)

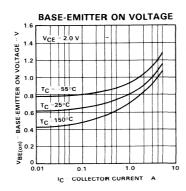
Maximum Vol	tages and Currents	2N4231	2N4232	2N4233
V _{CEO}	Collector to Emitter Voltage	40 V	60 V	80 V
VCBO	Collector to Base Voltage	40 V	60 V	80 V
V _{EBO}	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
	Continuous Collector Current	3.0 A	3.0 A	3.0 A
I _C	Continuous Base Current	1.0 A	1.0 A	1.0 A
Maximum Pov	ver Dissipation			
PD	Total Dissipation @ 25°C Case Ten	nperature		35 W
В	Derate Linearly from 25°C			0.2 W/°C
Maximum Ten	nperatures			
T _J , T _{stq}	Storage and Operation Junction Te	emperatures	−65°0	C to +200°C
Thermal Chara	acteristics			
$R_{\theta,IC}$	Thermal Resistance, Junction to Ca		5.0°C/W	

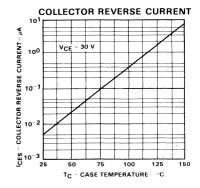

FAIRCHILD • 2N4231 • 2N4232 • 2N4233

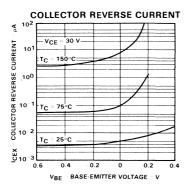

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

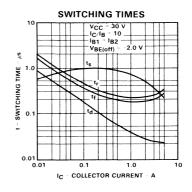

SYMBOL	CHARACTERISTIC	2N4231		2N4232		2N4233			TEST SOMETIONS
STIMBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
FF CHARAC	TERISTICS	-			1				
V _{CEO} (sus)	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		V	I _C = 100 mA, I _B = 0
			1.0					mA	V _{CE} = 30 V, I _B = 0
ICEO	Collector Cutoff Current				1.0			mA	V _{CE} = 50 V, I _B = 0
							1.0	mA	V _{CE} = 70 V, I _B = 0
		100	0.1					mA	V _{CE} = 40 V, V _{BE} = -1.5 V
					0.1			mΑ	V _{CE} = 60 V, V _{BE} = -1.5 V
							0.1	mA	V _{CE} = 80 V, V _{BE} = -1.5 V
CEX	Collector Cutoff Current		1.0					mA	$V_{CE} = 40 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
					1.0			mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{ C}$
							1.0	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
			-	ļ	 	ļ			
1	Collector Cutoff Current		50	1	50			μΑ	V _{CB} = 40 V, I _E = 0
СВО	Collector Cutoff Current				50		50	μΑ	V _{CB} = 60 V, I _E = 0 V _{CB} = 80 V, I _E = 0
		-		-				μΑ	
¹ EBO	Emitter Cutoff Current		500	<u> </u>	500	<u> </u>	500	μΑ	V _{EB} = 5.0 V, I _C = 0
N CHARACT	ERISTICS T	10		T 40		1 40	· · · ·		
.	DC Current Gain (Note 1)	40 25	100	40 25	100	40 25	100		$I_C = 0.5 \text{ A}, V_{CE} = 2.0 \text{ V}$
hFE	DC Current Gain (Note 1)	10	100	10	100	10	100		I _C = 1.5 A, V _{CE} = 2.0 V I _C = 3.0 A, V _{CE} = 2.0 V
		''		10	-	10			
V _{CE(sat)}	Collector-Emitter Saturation		0.7		0.7		0.7	V	I _C = 1.5 A, I _B = 150 mA
	Voltage (Note 1)	-	2.0		2.0	-	2.0	V	I _C = 3.0 A, I _B = 300 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.4		1.4		1.4	٧	I _C = 1.5 A, V _{CE} = 2.0 V
YNAMIC CH	ARACTERISTICS							-	
C _{ob}	Output Capacitance		200		200		200	pF	V _{CB} = 10 V, I _E = 0, f = 0.1 MHz
h _{fe}	Small Signal Current Gain	20		20	T	20			IC = 500 mA, VCF = 10 V, f = 1.0 kl


NOTE: Pulse Condition; Length = 300 μs, Duty Cycle = 2%


FAIRCHILD • 2N4131 • 2N4232 • 2N4233







PNP SILICON

2N4234 2N4235 2N4236

DESIGNED FOR DRIVER CIRCUITS AND SWITCHING AND AMPLIFIER APPLICATIONS.

IDEAL FOR DIRECT REPLACEMENT OF GERMANIUM MEDIUM POWER DEVICES.

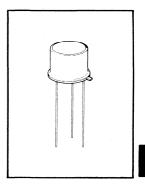
- 6.0 W DISSIPATION AT 25°C CASE
- 3.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT TO 2N4237, 2N4238, 2N4239

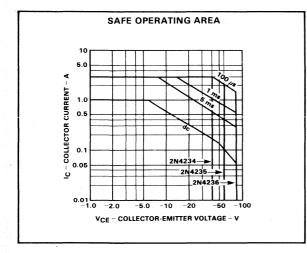
ABSOLUTE MAXIMUM RATINGS (Note 1) Maximum Voltages and Currents

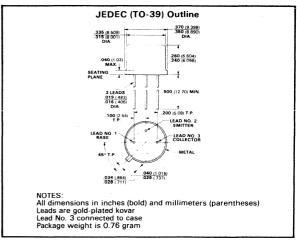
Maximum	Voltages and Currents
VCEO	Collector to Emitter Voltage
V _{CBO}	Collector to Base Voltage
VEBO	Emitter to Base Voltage
l _C	Continuous Collector Current
I _B	Continuous Base Current
Maximum	Power Dissipation
PD	Total Dissipation @ 25°C Case Temperature
J	Derate Linearly from 25°C

Maximum Temperatures

T_J,T_{stg} Storage and Operation Junction Temperatures


Thermal Characteristics


 $R_{\theta,JC}$ Thermal Resistance, Junction to Case


2N4234	2N4235	2N4236
-40 V	-60 V	-80 V
-40 V	-60 V	-80 V
-7.0 V	~7.0 V	-7.0 V
3.0 A	3.0 A	3.0 A
0.2 A	0.2 A	0.2 A
		6.0 W

0.4 W/°C -65°C to +175°C

25°C/W

0) (1.45.0)		2N4234		2N4235		2N4236				
SYMBOL CHARACTERISTIC		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
F CHARAC	TERISTICS									
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-40		-60		-80		V	I _C = 100 mA, I _B = 0	
			1.0					mA	V _{CE} = -30 V, I _B = 0	
CEO	Collector Cutoff Current			1	1.0			mA	$V_{CE} = -40 \text{ V, I}_{B} = 0$	
	-						1.0	mA	$V_{CE} = -60 \text{ V, I}_{B} = 0$	
			0.1					mA	V _{CE} = -40 V, V _{BE} = 1.5	
					0.1			mA	V _{CE} = -60 V, V _{BE} = 1.5	
			-			ľ	0.1	mA	V _{CE} = -80 V, V _{BE} ≈ 1.5	
CEX	Collector Cutoff Current	-	1.0					mA	$V_{CE} = -30 \text{ V}, V_{BE} = 1.5$ $T_{C} = 150^{\circ}\text{C}$	
					1.0			mA	$V_{CE} = -40 \text{ V}, V_{BE} = 1.5$ $T_{C} = 150^{\circ}\text{C}$	
						-	1.0	mA	$V_{CE} = -60 \text{ V}, V_{BE} = 1.5$ $T_{C} = 150^{\circ} \text{ C}$	
			0.1					mA	V _{CB} = -40 V, I _E = 0	
СВО	Collector Cutoff Current			· ·	0.1			mA	V _{CB} = -60 V, I _E = 0	
							0.1	mA	V _{CB} = -80 V, I _E = 0	
ГЕВО	Emitter Cutoff Current		0.5		0.5		0.5	mA	V _{EB} = -7.0 V, I _C = 0	
CHARACT	ERISTICS									
		40		40		40			$I_C = 100 \text{ mA}, V_{CE} = -1.0$	
hee	DC Current Gain (Note 1)	30	150	30	150	30	150		$I_C = 250 \text{ mA}, V_{CE} = -1.0$	
LE		20		20	-	20			$I_C = 500 \text{ mA}, V_{CE} = -1.0$	
		10		10		10			I _C = 1.0 A, V _{CE} = -1.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-0.6		-0.6		-0.6	V	I _C = 1.0 A, I _B = 125 mA	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-1.5		-1.5		-1.5	V	I _C = 1.0 A, I _B = 0.1 A	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.0		-1.0		-1:0	V	I _C = 250 mA, V _{CE} = -1.0	
NAMIC CH	ARACTERISTICS		·		1	<u> </u>				
f _T	Current-Gain- Bandwidth Product	3.0		3.0		3.0		MHz	I _C = 100 mA, V _{CE} = -10 f = 1.0 MHz	
					L	ļ	ļ			

25

100

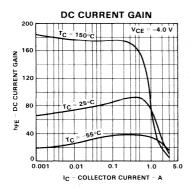
25

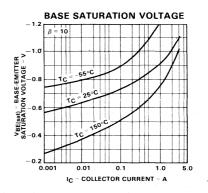
100

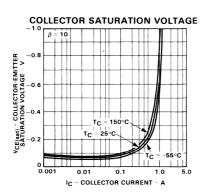
рF

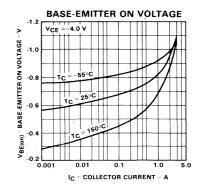
 $V_{CB} = -10 \text{ V}, I_E = 0,$ f = 100 kHz

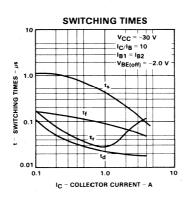
 $I_C = 50 \text{ mA}, V_{CE} = -10 \text{ V},$ f = 100 kHz


h _{fe}	Small Signal Current Gain	25	
NOTE: 1. Pulse c	onditions: Length = 300 µs, Duty Cyc	ie = 2%.	

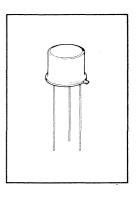

Output Capacitance

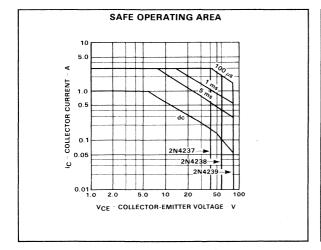

 c_{ob}

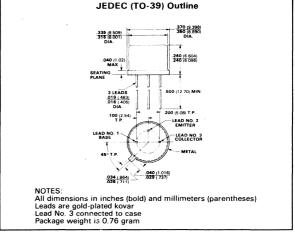

100


FAIRCHILD • 2N4234 • 2N4235 • 2N4236

NPN SILICON

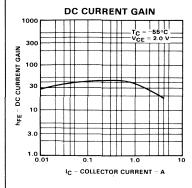

2N4237 2N4238 2N4239

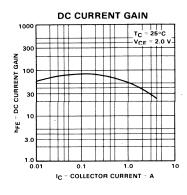

DESIGNED FOR DRIVER CIRCUITS AND SWITCHING AND AMPLIFIER APPLICATIONS. IDEAL FOR DIRECT REPLACEMENT OF GERMANIUM MEDIUM POWER DEVICE.

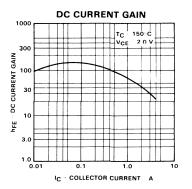

- 5.0 W DISSIPATION AT 25°C CASE
- 4.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT TO 2N4234, 2N4235, 2N4236

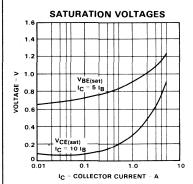
ABSOLUTE MAXIMUM RATINGS (Note 1)

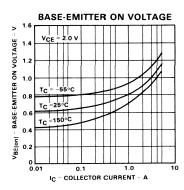
Maximum Vol	tages and Currents	2N4237	2N4238	2N4239
v_{CEO}	Collector to Emitter Voltage	40 V	60 V	80 V
V _{CBO}	Collector to Base Voltage	40 V	60 V	80 V
VEBO	Emitter to Base Voltage	7.0 V	7.0 V	7.0 V
IC .	Continuous Collector Current	1.0 A	1.0 A	1.0 A
I _B	Continuous Base Current	0.2 A	0.2 A	0.2 A
Maximum Pow	er Dissipation			
P_{D}	Total Dissipation @ 25°C Case Temp	perature		6.0 W
J	Derate Linearly from 25°C		3	4.3 mW/°C
Maximum Tem	peratures			
T_J, T_sta	Storage and Operation Junction Ten	nperatures	65° C	C to +200°C
Thermal Chara	cteristics			
$R_{ heta}JC$	Thermal Resistance, Junction to Cas	e		29.2°C/W

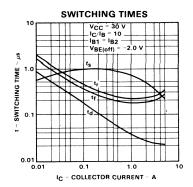


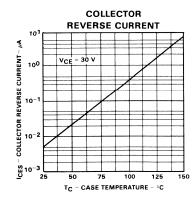


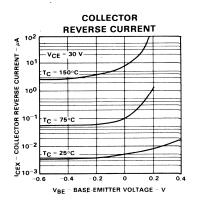

FAIRCHILD • 2N4237 • 2N4238 • 2N4239


SYMBOL	CHARACTERISTIC	2N4237		2N4238		2N4239		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARAC	TERISTICS								
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		٧	I _C = 100 mA, I _B = 0
			1.0		4, 1			mA	V _{CE} = 40 V, I _B = 0
CEO	Collector Cutoff Current				1.0			mA	$V_{CE} = 60 \text{ V}, I_{B} = 0$
							1.0	mA	$V_{CE} = 80 \text{ V}, I_B = 0$
			0.1					mA	V _{CE} = 45 V,V _{BE} = -1.5 V
					0.1			mA	$V_{CE} = 75 \text{ V}, V_{BE} = -1.5 \text{ V}$
•							0.1	mA	$V_{CE} = 90 \text{ V}, V_{BE} = -1.5 \text{ V}$
ICEX	Collector Cutoff Current		1.0					mA	$V_{CE} = 45 \text{ V}, V_{BE} = -1.5 \text{ V}, T_A = 150^{\circ}$
				ĺ	1.0			mA	$V_{CE} = 75 \text{ V,V}_{BE} = -1.5 \text{ V,T}_{A} = 150^{\circ}$
							1.0	mA	$V_{CE} = 90 \text{ V,V}_{BE} = -1.5 \text{ V,T}_{A} = 150^{\circ}$
			0.1					mA	V _{CB} = 50 V, I _E = 0
Ісво	Collector Cutoff Current				0.1			mA	$V_{CB} = 80 \text{ V}, I_{E} = 0$
							0.1	mA	$V_{CB} = 100 V, I_{E} = 0$
IEBO	Emitter Cutoff Current		0.5		0.5		0.5	mA	V _{EB} = 6.0 V, I _C = 0
N CHARACT	ERISTICS			<u> </u>					
:		30		30		30			IC = 50 mA, VCE = 1.0 V
hFE	DC Current Gain (Note 1)	30	150	30	150	30	150		$I_C = 250 \text{ mA}, V_{CE} = 1.0 \text{ V}$
"FE	Do carrent dam (Note 17	30	1	30		30			$I_C = 500 \text{ mA}, V_{CE} = 4.0 \text{ V}$
		15		15		15			$I_C = 1.0 A$, $V_{CE} = 1.0 V$
	Collector-Emitter Saturation		0.3		0.3		0.3	٧	I _C = 500 mA, I _B = 50 mA
V _{CE(sat)}	Voltage (Note 1)		0.6		0.6		0.6	V	I _C = 1.0 A, I _B = 100 mA
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		1.5		1.5		1.5	V	I _C = 1.0 A, I _B = 100 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.0		1.0		1.0	٧	I _C = 250 mA, V _{CE} = 1.0 V
YNAMIC CH	ARACTERISTICS								
fT	Current-Gain-Bandwidth Product	2.0		2.0		2.0		MHz	I _C = 100 mA, V _{CE} = 10 V, f = 1.0 MHz
_	Output Capacitance	†	100	†	100		100	pF	V _{CB} = 10 V, I _F = 0, f = 0.1 MHz
C _{ob}	Output Capacitance	1	1 .00	1	,	1	1 .00	P.	1 CB 10 17 1E 0, 1 011 111112


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.





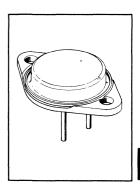


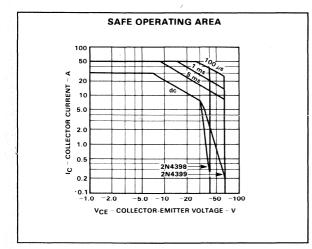
PNP SILICON

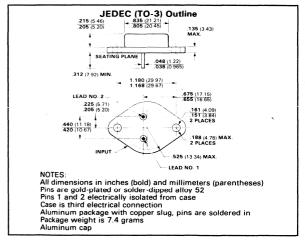
2N4398 2N4399

DESIGNED FOR USE IN POWER AMPLIFIER AND SWITCHING CIRCUITS SERVES AS DIRECT REPLACEMENT FOR GERMANIUM HIGH POWER DEVICES

- 200 W DISSIPATION AT 25°C CASE
- 30 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT TO 2N5301, 2N5302


ABSOLUTE MAXIMUM RATINGS (Note 1)


Maximum Voltages and Currents


viakiiiiuiii v	Ortages and Currents
v_{CEO}	Collector to Emitter Voltage
V_{CBO}	Collector to Base Voltage
VEBO	Emitter to Base Voltage
lc	Continuous Collector Current
l _B	Continuous Base Current
Maximum F	Power Dissipation
PD	Total Dissipation A 25°C Case Temperature
_	Derate Linearly from 25°C
Maximum 1	Temperatures
T_J , T_{stg}	Storage and Operation Junction Temperatures
	aracteristics

 $R_{ heta JC}$ Thermal Resistance, Junction to Case

ZN4399	2114398
-60 V	-40 V
-60 V	-40 V
-5.0 V	-5.0 V
30 A	30 A
7.5 A	7.5 A
200 W 1.14 W/°C	
to +200°C	-65°C
0.875°C/W	

FAIRCHILD • 2N4398 • 2N4399

2N4398

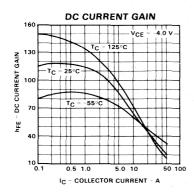
2N4399

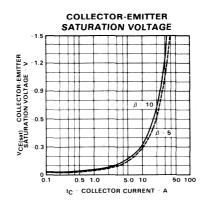
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

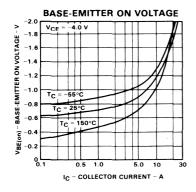
SYMBOL	CHARACTERISTIC	211/2	2N4398		2N4399		TEST CONDITIONS	
STWIBOL		MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
F CHARAC	TERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-40		-60		V	I _C = 200 mA, I _B = 0	
	Collector Cutoff Current		5.0			mA	V _{CE} = -40 V, I _B = 0	
CEO.	Collector Cutoff Current				5.0	mA	$V_{CE} = -60 \text{ V, I}_{B} = 0$	
	·		5.0			mA	V _{CE} = -40 V, V _{BE} = 1.5 V	
CEX	Collector Cutoff Current				5.0	mA	V _{CE} = -60 V, V _{BE} = 1.5 V	
			10		10	mA	$V_{CE} = -30 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
1	Collector Cutoff Current		1.0			mA	V _{CB} = -40 V, I _E = 0	
СВО	Collector Cutoff Current				1.0	mA	$V_{CB} = -60 \text{ V}, I_{E} = 0$	
I _{EBO}	Emitter Cutoff Current		5.0		5.0	mA	V _{EB} = -5.0 V, I _C = 0	

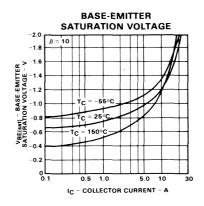
hFE	DC Current Gain (Note 1)	5.0 15 40	60	5.0 15 40	60	-	$I_C = 30 \text{ A}, V_{CE} = -4.0 \text{ V}$ $I_C = 15 \text{ A}, V_{CE} = -4.0 \text{ V}$ $I_C = 1.0 \text{ A}, V_{CE} = -2.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-4.0 -0.75 -1.0		-4.0 -0.75 -1.0	V V V	I _C = 30 A, I _B = 6.0 A I _C = 10 A, I _B = 1.0 A I _C = 15 A, I _B = 1.5 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-1.85		1.85	V	I _C = 15 A, I _B = 1.5 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-3.0 -1.8		-3.0 -1.8	v v	I _C = 30 A, V _{CE} = -4.0 V I _C = 15 A, V _{CE} = -2.0 V

DYNAMIC CHARACTERISTICS


f _T	Current-Gain- Bandwidth Product	4.0	4.0	MHz	I _C = 1.0 A, V _{CE} = -10 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	40	40		I _C = 1.0 A, V _{CE} = -10 V, f = 1.0 kHz


SWITCHING CHARACTERISTICS

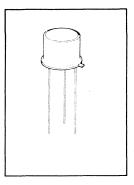

RESISTIVE LOAD

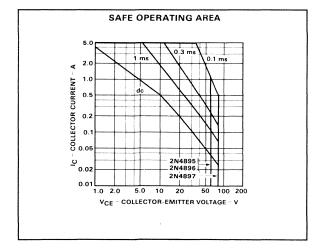

t _r	Rise Time	0.4	0.4	μs	$V_{CC} = -30 \text{ V}, I_C = 10 \text{ A},$ $I_{B1} = 1.0 \text{ A}, t_p = 10 \text{ to } 100 \mu\text{s},$ Duty Cycle 2%
t _s	Storage Time	1.5	1.5	μς	$V_{CC} = -30 \text{ V}, I_{C} = 10 \text{ A},$ $I_{B1} = I_{B2} = 1.0 \text{ A}, t_{p} = 10 \text{ to } 100 \mu\text{s},$ Duty Cycle = 2%
t _f	Fall Time	0.6	0.6	μs	$V_{CC} = -30 \text{ V}, I_{C} = 10 \text{ A},$ $I_{B1} = I_{B2} = 1.0 \text{ A}, t_{p} = 10 \text{ to } 100 \mu\text{s},$ Duty Cycle 2%

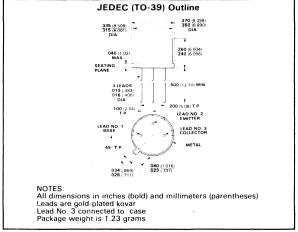
NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

NPN SILICON

2N4895 2N4896 2N4897

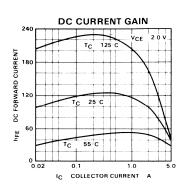

DESIGNED AS GENERAL PURPOSE MEDIUM POWER DEVICE

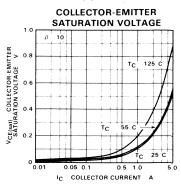

- 4.0 W DISSIPATION AT 25°C CASE
- 5.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 0.7 V_{CE(sat)} AT 2.0 A
- LOW LEAKAGE I_{CES(MAX)} 100 μA @ T_C = 150°C

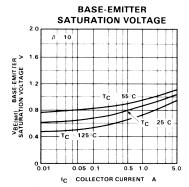

ABSOLUTE MAXIMUM RATINGS (Note 1)

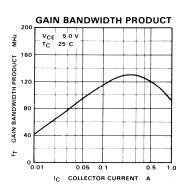
Maximum	Voltages and Currents
VCEO	Collector to Emitter Voltage
V _{СВО}	Collector to Base Voltage
V_{FBO}	Emitter to Base Voltage
lc .	Continuous Collector Current
I _B	Continuous Base Current
Maximum	Power Dissipation
P_{D}	Total Dissipation @ 25°C Case Temperature
~	Derate Linearly from 25°C
Maximum	Temperatures
T_J, T_{sto}	Storage and Operation Junction Temperatures
Thermal C	haracteristics
$R_{ heta}JC$	Thermal Resistance, Junction to Case

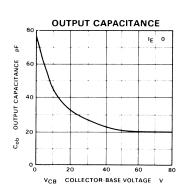
2N4895	2N4896	2N4897
60 V	60 V	80 V
120 V	120 V	120 V
6.0 V	6.0 V	6.0 V
5.0 A	5.0 A	5.0 A
1.0 A	1.0 A	1.0 A
		4.0 W
	22	.9 mW/°C
	−65°C t	:o +200°C
		_
		43.8°C/W

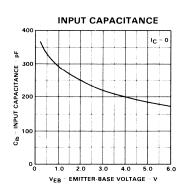

FAIRCHILD • 2N4895 • 2N4896 • 2N4897

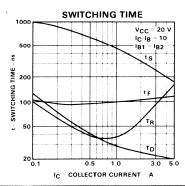

SYMBOL	CHARACTERISTIC	2N4	895	2N4	896	2N4	897	UNIT	TEST CONDITIONS
CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	CIVIT	TEST CONDITIONS	
F CHARAC	TERISTICS			•					
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		60		80		V	I _C = 50 mA, I _B = 0
			1.0		1.0			mA	V _{CF} = 120 V, V _{BF} = 0
							1.0	mA	V _{CF} = 150 V, V _{BF} = 0
			1.0		1.0			mA	V _{CE} = 60 V, V _{BE} = 0
^I CES	Collector Reverse Current						1.0	mA	V _{CE} = 100 V, V _{BE} = 0
			0.1	:	0.1			mA	$V_{CE} = 60 \text{ V}, V_{BE} = 0,$ $T_{C} = 150^{\circ}\text{C}$
							0.1	mA	$V_{CE} = 100 \text{ V}, V_{BE} = 0,$ $T_{C} = 150^{\circ}\text{C}$
^I ЕВО	Emitter Cutoff Current		1.0		1.0		1.0	mA	V _{EB} = 4.0 V, I _C = 0
N CHARACT	ERISTICS		<u> </u>				1		
<u></u>	DC 0 (N . 4)	40	120	100	300	40	120	T	I _C = 2.0 A, V _{CF} = 2.0 V
h _{FE}	DC Current Gain (Note 1)	15		35		15			$I_C = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V},$ $T_C = -55^{\circ} \text{ C}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.0		1.0		1.0	V	I _C = 5.0 A, I _B = 5.0 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		1.6		1.6	-	1.6	· V	I _C = 5.0 A, I _B = 0.5 A
YNAMIC CH	ARACTERISTICS		1		L				<u> </u>
c _{ob}	Output Capacitance		80		80		80	pF	V _{CB} = 10 V, I _E = 0, f = 0.14 MHz
c _{ib}	Input Capacitance		500		500		500	pF	V _{EB} = 0.5 V, I _C = 0, f = 0.14 MHz
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	2.5		4.0		2.5			I _C = 0.5 A, V _{CE} = 5.0 V, f = 20 MHz
VITCHING C	HARACTERISTICS		1	<u> </u>	L	1		<u>.</u>	
ESISTIVE LO	DAD								*
		T	T	T	T	T		T	

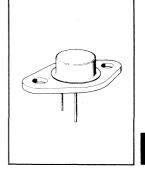

t _d	Delay Time	50	50	50	μs	V _{CC} = 20 V, I _C = 5.0 A, I _{B1} = 0.5 A, t _p = 10 µs,
t _r	Rise Time	300	300	300	μς	B ₁ = 0.5 A, τ _p = 10 μs, Duty Cycle 1%
t _s	Storage Time	350	350	350	μς	$V_{CC} = 20 \text{ V, I}_{C} = 5.0 \text{ A,}$ $I_{B1} = I_{B2} = 0.5 \text{ A, t}_{p} = 10 \mu\text{s,}$ Duty Cycle 1%
t _f	Fall Time	300	300	300	μs	


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


FAIRCHILD • 2N4895 • 2N4896 • 2N4897






PNP SILICON

2N4898 2N4899 2N4900

MEDIUM POWER DEVICE DESIGNED FOR DRIVER CIRCUITS. SWITCHING AND AMPLIFIER APPLICATIONS

- 25 W DISSIPATION AT 25°C CASE
- 4.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS 2N4910, 2N4911, 2N4912

ABSOLUTE MA	XXIMUM RATINGS (Note 1)			
Maximum Vo	oltages and Currents	2N4898	2N4899	2N4900
V _{CFO}	Collector to Emitter Voltage	-40 V	-60 V	−80 V
V _{CBO}	Collector to Base Voltage	-40 V	−60 V	−80 V
VEBO	Emitter to Base Voltage	-5.0 V	−5.0 V	−5.0 V
l _C	Continuous Collector Current	1.0 A	1.0 A	1.0 A
I _B	Continuous Base Current	1.0 A	1.0 A	1.0 A
Maximum Po	wer Dissipation			
PD	Total Dissipation @ 25°C Case Temp	oerature		25 W
_	Derate Linearly from 25°C		(0.143 W/°C
Massimasuma Ta				

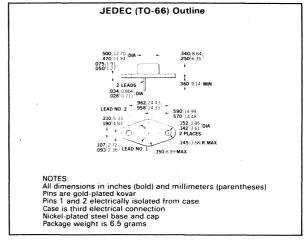
Maximum Temperatures

 -65° C to $+200^{\circ}$ C Storage and Operation Junction Temperatures

Thermal Characteristics

ပ

Thermal Resistance, Junction to Case $R_{\theta}JC$

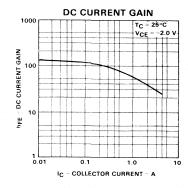


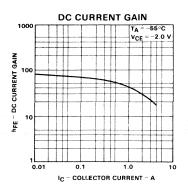
-5.0 -10 -20

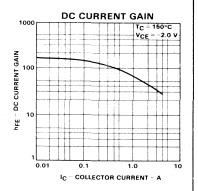
VCE - COLLECTOR-EMITTER VOLTAGE - V

2N4898

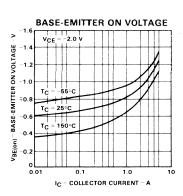
2N4899= 2N4900

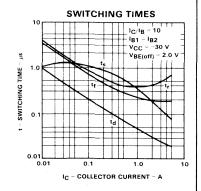


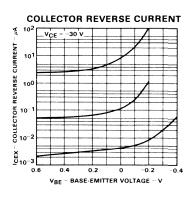

7.0°C/W


FAIRCHILD • 2N4898 • 2N4899 • 2N4900

CVMDO	OLIABA OTERIOTIC	2N4	4898	2N	4899	2N	14900		TEST COMPLETE:
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
FF CHARAC	TERISTICS								
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-40		-60		80		V	I _C = 100 mA, I _B = 0
ICEO	Collector Cutoff Current		0.5		0.5		0.5	mA mA mA	$V_{CE} = -20 \text{ V}, I_B = 0$ $V_{CE} = -30 \text{ V}, I_B = 0$ $V_{CE} = -40 \text{ V}, I_B = 0$
CEX	Collector Cutoff Current		1.0		0.1		0.1	mA mA mA	VCE = -40 V, VBE = 1.5 V VCE = -60 V, VBE = 1.5 V VCE = -80 V, VBE = 1.5 V VCE = -40 V, VBE = 1.5 V, TC = 150°C
CEX					1.0		1.0	mA mA	$V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$ $V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
СВО	Collector Cutoff Current		0.1		0.1		0.1	mA mA mA	V _{CB} = -40 V, I _E = 0 V _{CB} = -60 V, I _E = 0 V _{CB} = -80 V, I _E = 0
¹ EBO	Emitter Cutoff Current	-	1.0		1.0		1.0	mA	V _{EB} = -5.0 V, I _C = 0
N CHARACT	ERISTICS								
hFE	DC Current Gain (Note 1)	10 20 40	100	10 20 40	100	10 20 40	100		I _C = 50 mA, V _{CE} = -1.0 V I _C = 500 mA, V _{CE} = -1.0 V I _C = 1.0 A, V _{CE} = -1.0 V
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		-0.6		-0.6		-0.6	V	I _C = 1.0 A, I _B = 100 mA
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-1.3		-1.3		-1.3	V	I _C = 1.0 A, I _B = 100 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.3		-1.3	-1.3		٧	I _C = 1.0 A, V _{CE} = -1.0 V
YNAMIC CH.	ARACTERISTICS								
fŢ	Current-Gain-Bandwidth Product	3.0		3.0		3.0		MHz	I _C = 200 mA, V _{CE} = -10 V, f = 1.0 MHz
C _{ob}	Output Capacitance		100		100		100	рF	V _{CB} = -10 V, I _E = 0, f = 0.1 MHz
h _{fe}	Small Signal Current Gain	25		25		25			I _C = 250 mA, V _{CE} = -10 V,


NOTE: Pulse Condition: Length = 300 μ s, Duty Cycle = 2%





PNP SILICON

2N4901 2N4902 2N4903

DESIGNED FOR USE IN POWER AMPLIFIER AND SWITCHING CIRCUITS

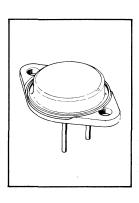
- 87.5 W DISSIPATION AT 25°C CASE
- 5.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS TO 2N5067, 2N5068, 2N5069

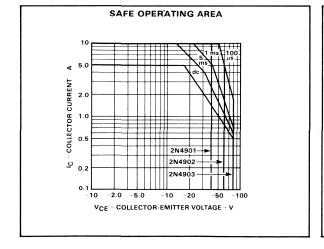
ABSOLUTE MAXIMUM RATINGS (Note 1)

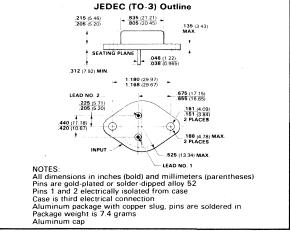
Maximum V	oltages and Currents	2N4901	2N4902	2N4903
VCEO	Collector to Emitter Voltage	-40 V	-60 V	-80 V
VCBO	Collector to Base Voltage	−40 V	-60 V	-80 V
VEBO	Emitter to Base Voltage	−5.0 V	−5.0 V	-5.0 V
l _C	Continuous Collector Current	5.0 A	5.0 A	5.0 A
ΙΒ	Continuous Base Current	1.0 A	1.0 A	1.0 A
Maximum P	ower Dissipation			

 P_{D} Total Dissipation @ 25°C Case Temperature

Derate Linearly from 25°C

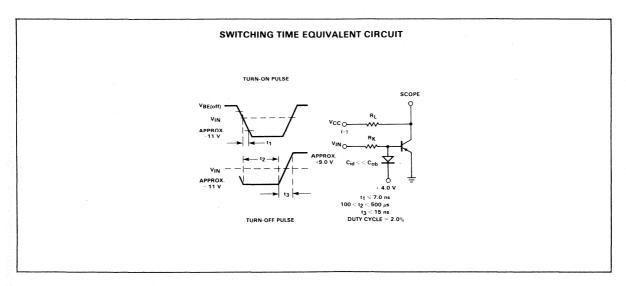

Maximum Temperatures

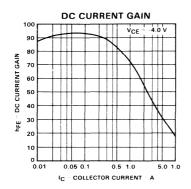

TJ, Tsta Storage and Operation Junction Temperatures

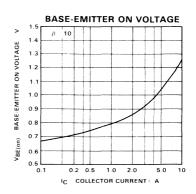

Thermal Characteristics

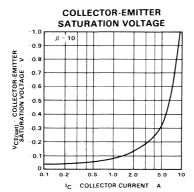
 $R_{\theta}JC$ Thermal Resistance, Junction to Case

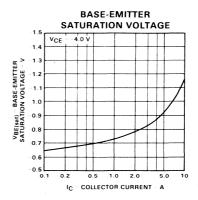
2N4901	2N4902	2N4903
-40 V	-60 V	-80 V
–40 V	-60 V	-80 V
–5.0 V	−5.0 V	-5.0 V
5.0 A	5.0 A	5.0 A
1.0 A	1.0 A	1.0 A
		87.5 W 0.5 W/°C
	-65°C	to +200°C

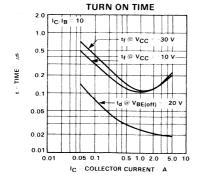

2.0°C/W

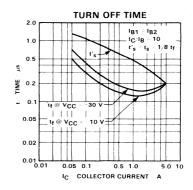

FAIRCHILD • 2N4901 • 2N4902 • 2N4903


FLECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


0.44001	011454677919719	2N4901		2N4902		2N4903		115117		
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
OFF CHARA	ACTERISTICS	-	·		·					
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-40		60		80		V	IC = 200 mA, I _B = 0	
			1.0					mA	V _{CE} = -40 V, I _B = 0	
CEO	Collector Cutoff Current				1.0			mA	$V_{CE} = -60 \text{ V, I}_{B} = 0$	
							1.0	mA	$V_{CE} = -80 \text{ V, I}_{B} = 0$	
			0.1					mA	V _{CE} = -40 V, V _{BE} = 1.5 V	
					0.1			mΑ	V _{CE} = -60 V, V _{BE} = 1.5 V	
							0.1	mA	$V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V}$	
ICEX	Collector Cutoff Current		2.0					mA	$V_{CE} = -40 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$	
			All and the second of the seco		2.0			mA	$V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$	
							2.0	mA	$V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
			0.1					mA	V _{CB} = -40 V, I _E = 0	
СВО	Collector Cutoff Current				0.1			mA	V _{CB} = -60 V, I _E = 0	
				-			0.1	mA	V _{CB} = -80 V, I _E = 0	
^I ЕВО	Emitter Cutoff Current		1.0	1	1.0		1.0	mΑ	V _{EB} = - 5.0 V, I _C = 0	
ON CHARA	CTERISTICS									
<u></u>	500 (0.4)	20	80	20	80	20	80		I _C = 1.0 A, V _{CE} = -2.0 V	
hFE	DC Current Gain (Note 1)	7.0		7.0		7.0			I _C = 5.0 A, V _{CE} = -2.0 V	
	Collector-Emitter Saturation		-0.4		-0.4		-0.4	V	I _C = 1.0 A, I _B = 0.1 A	
VCE(sat)	Voltage (Note 1)		-1.5		-1.5		-1.5	\ v	I _C = 5.0 A, I _B = 1.0 A	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.2		-1.2		-1.2	V	I _C = 1.0 A, V _{CE} = -2.0 V	
DYNAMIC (CHARACTERISTICS	·								
fΤ	Current-Gain-Bandwidth Product	4.0		4.0		4.0		MHz	I _C = 1.0 A, V _{CE} = -10 V, f = 1.0 MHz	
h _{fe}	Small Signal Current Gain	20		20		20			I _C = 0.5 A, V _{CE} = -10 V, f = 1.0 kHz	


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.





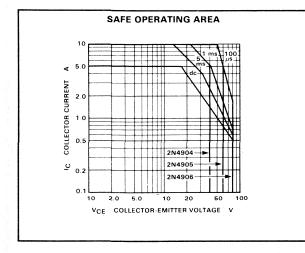
PNP SILICON

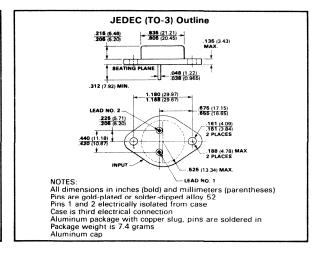
2N4904 2N4905 2N4906

DESIGNED FOR USE IN POWER AMPLIFIER AND SWITCHING CIRCUITS

- 87.5 W DISSIPATION AT 25°C CASE
- 5.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS TO 2N4913, 2N4914, 2N4915

AE

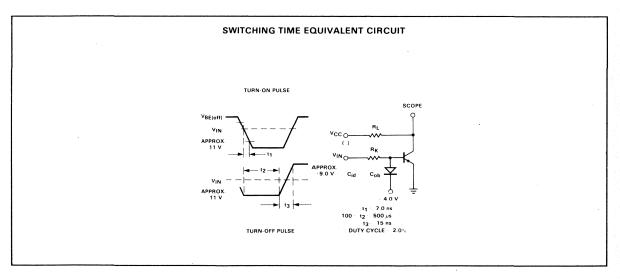

BSOLUTE N	IAXIMUM RATINGS (Note 1)			
Maximum \	/oltages and Currents	2N4904	2N4905	2N4
VCEO	Collector to Emitter Voltage	-40 V	-60 V	-8
VCBO	Collector to Base Voltage	-40 V	-60 V	-8
VEBO	Emitter to Base Voltage	-5.0 V	-5.0 V	-5.
IC	Continuous Collector Current	5.0 A	5.0 A	5.
lв	Continuous Base Current	1.0 A	1.0 A	1.
Maximum F	Power Dissipation			
P_{D}	Total Dissipation @ 25°C Case Temperature			87.
· -	D			0 5 14


Derate Linearly from 25°C Maximum Temperatures

Storage and Operation Junction Temperatures T_J, T_{stq} Thermal Characteristics

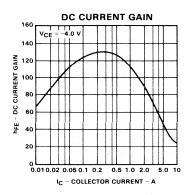
 $R_{\theta}JC$ Thermal Resistance, Junction to Case

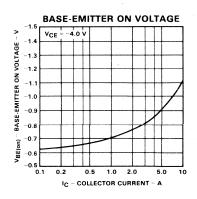
* * * * * * * * * * * * * * * * * * *	2N4906	2N4905
	-80 V	-60 V
	-80 V	-60 V
	-5.0 V	-5.0 V
	5.0 A	5.0 A
	1.0 A	1.0 A
	87.5 W	
	0.5 W/°C	
	to +200°C	−165°C
·	2.0°C/W	

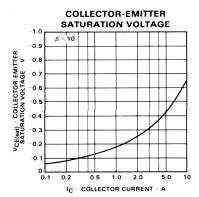


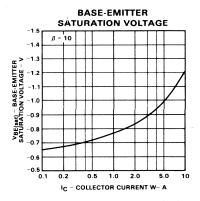
FAIRCHILD • 2N4904 • 2N4905 • 2N4906

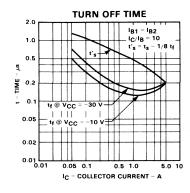
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

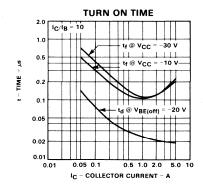

SYMBOL	CHARACTERISTIC	2N4904		2N4905		2N4906			TEST COND. TIONS	
STIMBUL		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARACT	TERISTICS						.	I	:	
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-40		-60		-80		v	I _C = 200 mA, I _B = 0	
ICEO	Collector Cutoff Current		1.0		1.0		1.0	mA	V _{CE} = -40 V, I _B = 0 V _{CE} = -60 V, I _B = 0 V _{CE} = -80 V, I _B = 0	
			0.1		0.1	·		mA mA	V _{CE} = -40 V, V _{BE} = 1.5 V V _{CE} = -60 V, V _{BE} = 1.5 V	
			2.0				0.1	mA mA	V _{CE} = -80 V, V _{BE} = 1.5 V V _{CE} = -40 V, V _{BE} = 1.5 V	
CEX	Collector Cutoff Current				2.0			mA	$T_C = 150^{\circ}C$ $V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V}$ $T_C = 150^{\circ}C$	
•							2.0	mA	$V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V}$ $T_{C} = 150^{\circ}\text{C}$	
I _{CBO}	Collector Cutoff Current		0.1		0.1		0.1	mA mA mA	$V_{CB} = -40 \text{ V}, I_{E} = 0$ $V_{CB} = -60 \text{ V}, I_{E} = 0$ $V_{CB} = -80 \text{ V}, I_{E} = 0$	
IEBO	Emitter Cutoff Current		1.0		1.0		1.0	mΑ	V _{EB} = 5.0 V, I _C = 0	
N CHARACTI	ERISTICS		L	l			·			
hFE	DC Current Gain (Note 1)	25 7.0	100	25 7.0	100	25 7.0	100		I _C = 2.5 A, V _{CE} = -2.0 V I _C = 5.0 A, V _{CE} = -2.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-1.5		-1.5		-1.5	V	I _C = 5.0 A, I _B = 1.0 A	
V _{BE} (on)	Base-Emitter "On" Voltage (Note 1)		-1.4		-1.4		-1.4	V	I _C = 2.5 A, V _{CE} = -2.0 V	
YNAMIC CHA	ARACTERISTICS									
fT	Current-Gain-Bandwidth Product	4.0		4.0	-	4.0		MHz	I _C = 1.0 A, V _{CE} = -10 V, f = 1.0 MHz	
h _{fe}	Small Signal Current Gain	40		40		40			I _C = 0.5 A, V _{CE} = -10 V,	


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.




f = 1.0 kHz


FAIRCHILD • 2N4904 • 2N4905 • 2N4906



PNP SILICON

2N4907 2N4908 2N4909

MESA POWER DEVICE DESIGNED PRIMARILY FOR UNTUNED AMPLIFIER APPLICATIONS

- 150 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT

ABSOLUTE MAXIMUM RATINGS (Note 1)

Voltages and Currents
Collector to Emitter Voltage
Collector to Base Voltage
Emitter to Base Voltage
Continuous Collector Current
Continuous Base Current

Maximum Power Dissipation

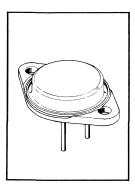
P_D Total Dissipation @ 25°C Case Temperature

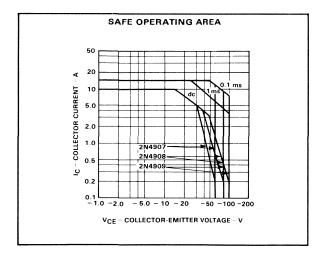
Derate Linearly from 25°C

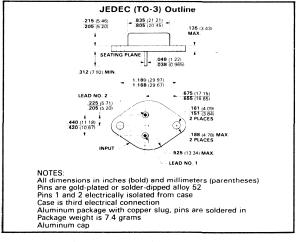
Maximum Temperatures

T_J,T_{stq} Storage and Operation Junction Temperatures

Thermal Characteristics

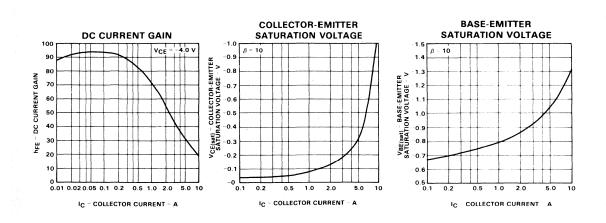

 $R_{\theta JC}$ Thermal Resistance, Junction to Case


2N4908	2N4909
-60 V	-80 V
-60 V	-80 V
-5.0 V	-5.0 V
10 A	10 A
7.0 A	7.0 A
	-60 V -60 V -5.0 V 10 A


150 W 0.86 W/°C

-65°C to +200°C

1.17°C/W



FAIRCHILD • 2N4907 • 2N4908 • 2N4909

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	2N4907		2N4908		2N4909		LIMITO	TEST COMPLETIONS	
STINBUL		MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS	
FF CHARACTE	RISTICS		' 							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-40		-60		-80		V	I _C = 200 mA, I _B = 0	
ICEO	Collector Cutoff Current		0.7		0.7		0.7	mA mA	V _{CE} = -20 V, I _B = 0 V _{CE} = -30 V, I _B = 0 V _{CE} = -40 V, I _B = 0	
CEX	Collector Cutoff Current		2.0		2.0		2.0	mA mA mA mA	VCE = -40 V, VBE = 1.5 VCE = -60 V, VBE = 1.5 VCE = -80 V, VBE = 1.5 VCE = -40 V, VBE = 1.5 TC = 150°C	
					30		30	mA	$V_{CE} = -60 \text{ V}, V_{BE} = 1.5$ $T_{C} = 150^{\circ}\text{C}$ $V_{CE} = -80 \text{ V}, V_{BE} = 1.5$ $T_{C} = 150^{\circ}\text{C}$	
IEBO	Emitter Cutoff Current		5.0		5.0		5.0	mA	V _{EB} = -5.0 V, I _C = 0	
N CHARACTE	RISTICS	-			-	*************				
μŁΕ	DC Current Gain (Note 1)	5.0 20	80	5.0 20	80	5.0 20	80		I _C = 10 A, V _{CE} = -4.0 V I _C = 4.0 A, V _{CE} = -4.0 \	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-2.0 -0.75		-2.0 -0.75		-2.0 -0.75	V	I _C = 10A, I _B = 2.0 A I _C = 4.0 A, I _B = 400 mA	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.5		-1.5		-1.5	V	I _C = 4.0 A, V _{CE} = -4.0 \	
YNAMIC CHAI	RACTERISTICS									
C _{ob}	Output Capacitance		600		600		600	pF	$V_{CB} = -10 \text{ V}, I_{E} = 0,$ f = 0.1 MHz	
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	4.0		4.0		4.0			I _C = 1.0 A, V _{CE} = -10 V f = 1.0 MHz	
h _{fe}	Small Signal Current Gain	15		15		15			I _C = 1.0 A, V _{CE} = -4.0 V f = 1.0 kHz	

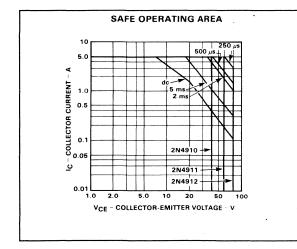
NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

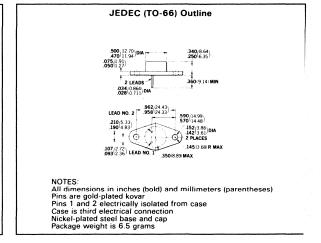
NPN SILICON

2N4910 2N4911 2N4912

MEDIUM POWER DEVICE DESIGNED FOR DRIVER CIRCUITS. **SWITCHING AND AMPLIFIER APPLICATIONS**

- 25 W DISSIPATION AT 25°C CASE
- 1.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT TO 2N4898, 2N4899, 2N4900

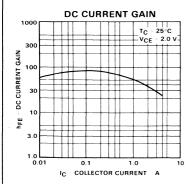

ABSOLUTE MAXIMUM RATINGS (Note 1)

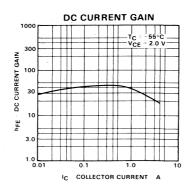

Maximum V	oltages and Currents	2N4910	2N4911	2N49
VCEO	Collector to Emitter Voltage .	40 V	60 V	80 V
VCBO	Collector to Base Voltage	40 V	60 V	80 V
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 √
IC.	Continuous Collector Current	1.0 A	1.0 A	1.0 A
IB	Continuous Base Current	1.0 A	1.0 A	1.0 A
Maximum P	ower Dissipation			
PD	Total Dissipation @ 25°C Case Temperature			25
	Derate Linearly from 25°C			0.143 W/°
Maximum T	emperatures			

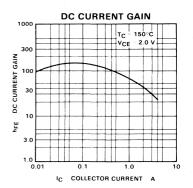
TJ, T_{stg} Storage a Thermal Characteristics Storage and Operation Junction Temperatures

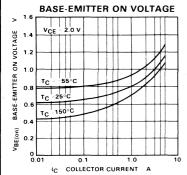
Thermal Resistance, Junction to Case $R_{\theta,IC}$

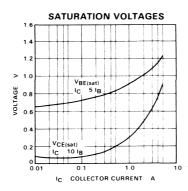
2N4912	2N4911	14910
80 V	60 V	40 V
80 V	60 V	40 V
5.0 V	5.0 V	.0 V
1.0 A	1.0 A	.0 A
1.0 A	1.0 A	.0 A
25 W 0.143 W/°C		
-65°C to +200°C		
7.0°C/W		

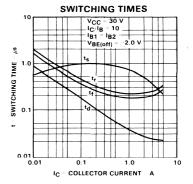


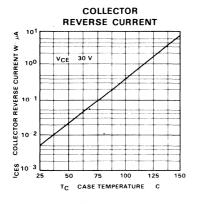


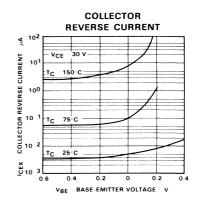

FAIRCHILD • 2N4910 • 2N4911 • 2N4912


SYMBOL	CHARACTERISTIC	2N4910		2N4911		2N4912			TEST SOME TIONS	
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARACTE	RISTICS									
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		٧	I _C = 100 mA, I _B = 0	
ICEO	Collector Cutoff Current		0.5		0.5		0.5	mA mA mA	V _{CE} = 20 V, I _B = 0 V _{CE} = 30 V, I _B = 0 V _{CE} = 40 V, I _B = 0	
			0.1		0.1		0.1	mA mA mA	V _{CE} = 40 V, V _{BE} = -1.5 V _{CE} = 60 V, V _{BE} = -1.5 V _{CE} = 80 V, V _{BE} = -1.5 V _{CE} = 40 V, V _{BF} = -1.5	
CEX	Collector Cutoff Current		1.0		1.0			mA mA	$T_C = 150^{\circ} C$ $V_{CE} = 60 \text{ V}, V_{BE} = -1.5$ $T_C = 150^{\circ} C$	
n ne seus de Seg L							1.0	mA	V _{CE} = 80 V, V _{BE} = -1.5 T _C = 150°C	
СВО	Collector Cutoff Current		0.1		0.1		0.1	mA mA	V _{CB} = 40 V, I _E = 0 V _{CB} = 60 V, I _E = 0 V _{CB} = 80 V, I _E = 0	
IEBO	Emitter Cutoff Current	1	1.0		1.0	<u> </u>	1.0	mA	V _{EB} = 5.0 V, I _C = 0	
N CHARACTER	RISTICS					L		<u> </u>		
hFE	DC Current Gain (Note 1)	40 20 10	100	40 20 10	100	40 20 10	100		I _C = 50 mA, V _{CE} = 1.0 V I _C = 500 mA, V _{CE} = 1.0 V I _C = 1.0 A, V _{CE} = 1.0 V	
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		0.6		0.6		0.6	V	I _C = 1.0 A, I _B = 0.1 A	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		1.3		1.3		1.3	V	I _C = 1.0 A, I _B = 0.1 A	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.3		1.3		1.3	V	I _C = 1.0 A, V _{CE} = 1.0 V	
YNAMIC CHAF	RACTERISTICS									
C _{ob}	Output Capacitance		100		100		100	pF	V _{CB} = 10 V, I _E = 0, f = 0.1 MHz	
h _{fe}	Small Signal Current Gain	25		25		25			I _C = 250 mA, V _{CE} = 10 V f = 1.0 kHz	


FAIRCHILD • 2N4910 • 2N4911 • 2N4912

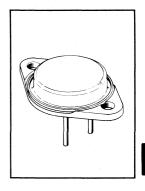


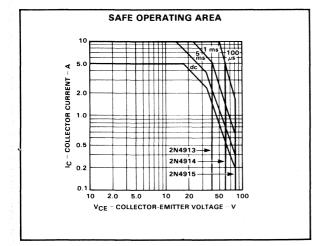




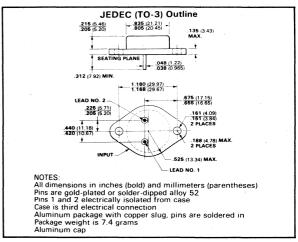
NPN SILICON

2N4913 2N4914 2N4915


DESIGNED FOR USE IN POWER AMPLIFIER AND SWITCHING CIRCUITS

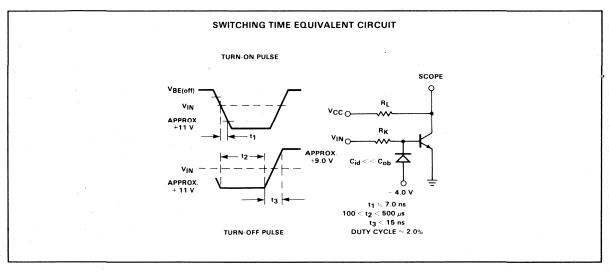

- 87.5 W DISSIPATION AT 25°C CAST
- 5.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS TO 2N4904, 2N4905, 2N4906

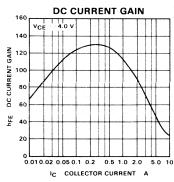
-	(R2OFO)	EWAX	WUW KA	HINGS	(Note I)	,

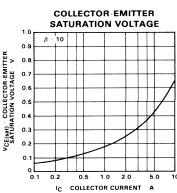

 $R_{\theta}JC$

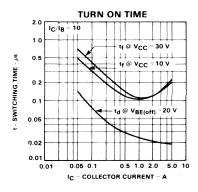
DOOFO LE INI	AXINON RATINGS (Note 1)			
Maximum V	oltages and Currents	2N4913	2N4914	2N4915
V _{CEO}	Collector to Emitter Voltage	40 V	60 V	80 V
VCBO	Collector to Base Voltage	40 V	60 V	80 V
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
lc C	Continuous Collector Current	5.0 A	5.0 A	5.0 A
۱ _B	Continuous Base Current	1.0 A	1.0 A	1.0 A
Maximum P	ower Dissipation			
P_{D}	Total Dissipation @ 25°C Case Temperature			87.5 W
J	Derate Linearly from 25°C			0.5 W/°C
Maximum T	emperatures			
T_J, T_stq	Storage and Operation Junction Temperatures		–65°(C to +200°C
Thermal Cha	aracteristics			

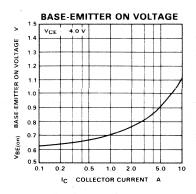
Thermal Resistance, Junction to Case

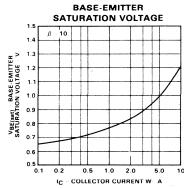


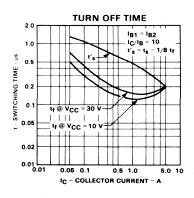

2.0°C/W


FAIRCHILD • 2N4913 • 2N4914 • 2N4915


SYMBOL	CHARACTERISTIC	2N4913 2N4914		2N4915			TEST COMPLETIONS		
STWBUL		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARAC	TERISTICS							*	
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		V	I _C = 200 mA, I _B = 0
			1.0					mA	V _{CE} = 40 V, I _B = 0
1 _{CEO}	Collector Cutoff Current				1.0			mA	V _{CE} = 60 V, I _B = 0
							1.0	mA	V _{CE} = 80 V, I _B = 0
			1.0					mA	V _{CE} = 40 V
					1.0			mA	V _{CE} = 60 V
							1.0	mA	V _{CF} = 80 V
CEX	Collector Cutoff Current		2.0					mA .	$V_{CE} = 40 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
					2.0			mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
							2.0	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
			1.0					mA	V _{CB} = 40 V, I _E = 0
СВО	Collector Cutoff Current				1.0			mA	$V_{CB} = 60 \text{ V, I}_{E} = 0$
							1.0	_, mA	$V_{CB} = 80 \text{ V}, I_{E} = 0$
^I EBO	Emitter Cutoff Current		1.0		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0
N CHARACT	ERISTICS								
b	DC Current Cain (Nate 1)	25	100	25	100	25	100		I _C = 2.5 A, V _{CE} = 2.0 V
hFE	DC Current Gain (Note 1)	7.0		7.0		7.0		San	$I_C = 5.0 \text{ A}, V_{CE} = 2.0 \text{ V}$
	Collector-Emitter		1.0		1.0		1.0	V	I _C = 2.5 A, I _B = 0.25 A
V _{CE(sat)}	Saturation Voltage (Note 1)		1.5		1.5		1.5	V	I _C = 5.0 A, I _B = 1.0 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)	÷	1.4		1.4		1.4	٧	I _C = 2.5 A, V _{CE} = 2.0 V
YNAMIC CH	ARACTERISTICS		L						
f _T	Current-Gain- Bandwidth Product	4.0		4.0		4.0		MHz	I _C = 1.0 A, V _{CE} = 10 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	20		20		20			I _C = 0.5 A, V _{CE} = 10 V, f = 1.0 kHz


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.



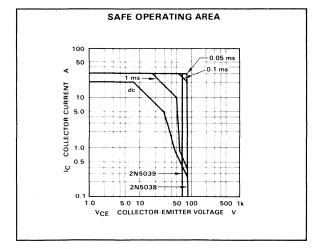


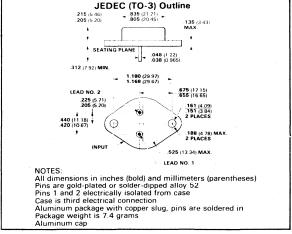
NPN SILICON

2N5038 2N5039

HIGH CURRENT, HIGH POWER, HIGH SPEED SILICON POWER TRANSISTORS

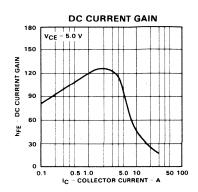
- 140 W DISSIPATION AT 25°C CASE
- 20 A CONTINUOUS COLLECTOR CURRENT
- <1.5 µs t_s @ 12 A (2N5038)

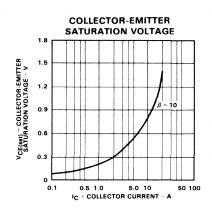

ABSOLUTE MAXIMUM RATINGS (Note 1)

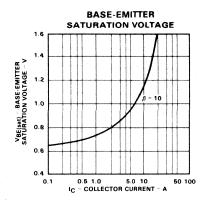

Maximum Voltag	es and Currents						
VCEO	Collector to Emitter Voltage						
V _{CBO}	Collector to Base Voltage						
VEBO	Emitter to Base Voltage						
l _C	Continuous Collector Current						
١c	Peak Collector Current						
I _B	Continuous Base Current						
Maximum Power Dissipation							
P_{D}	Total Dissipation @ 25°C Case Temperature Derate linearly from 25°C						
Maximum Tempe	eratures						
T _J , T _{stq}	Storage and Operation Junction Temperatures						
Thermal Charact	eristics						
$R_{ heta}$ JC	Thermal Resistance, Junction to Case •						
Tp	Maximum Pin Temperatures for Soldering						
•	Purposes: 1/8" from Case for 5 seconds						

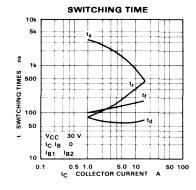
2N5039	2N5038
75 V	90 V
120 V	150 V
7.0 V	7.0 V
20 A	20 A
30 A	30 A
5.0 A	5.0 A
140 W 0.8 W/°C	
C to 200°C	-65°

12.5°C/W


FAIRCHILD • 2N5038 • 2N5039


ELECTRICAL	. CHARACTERISTICS	(25°C Case	Temperature unless	otherwise noted)
-------------------	-------------------	------------	--------------------	------------------


SYMBOL	CHARACTERISTIC	2N5	5038	2N!	5039	UNIT	TEST CONDITIONS
31711302	1	MIN	MAX	MIN	MAX	ONT	1231 CONDITIONS
OFF CHARAC	TERISTICS						
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	90		75		>	$I_C = 200 \text{ mA}, I_B = 0$
V _{CER(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	110		95		V	$I_C = 200 \text{ mA}, R_{BE} = \leq 50 \Omega$
VCEX(sus)	Collector-Emitter Sustaining Voltage (Note 1)	150		120		V	I _C = 0.2 A, V _{BE(off)} = -1.5 V
V _{EBO}	Emitter-Base Breakdown Voltage	7.0		7.0		V	IE = 50 mA, IC ≈ 0
CEO	Collector Cutoff Current		20		20	mA mA	V _{CE} = 70 V, I _B = 0 V _{CE} = 55 V, I _B = 0
			50		50	mA mA	V _{CE} = 140 V, V _{BE} = -1.5 V V _{CE} = 110 V, V _{BE} = -1.5 V
CEX	Collector Cutoff Current		10			mA	$V_{CE} = 100 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$ $V_{CE} = 85 \text{ V}, V_{BE} = -1.5 \text{ V},$
					10	mA	$T_{C} = 150^{\circ} C$
^I EBO	Emitter Cutoff Current		5.0 50		15 50	mA mA	V _{EB} = 5.0 V, I _C = 0 V _{EB} = 7.0 V, I _C = 0
ON CHARACT	ERISTICS						
hFE	DC Current Gain (Note 1)	50 20	250 100	30	250		I _C = 2.0 A, V _{CE} = 5.0 V I _C = 10 A, V _{CE} = 5.0 V
an a na sais an an an an an an an an	Collector-Emitter Saturation			20	1.0	V	I _C = 12 A, V _{CE} = 5.0 V I _C = 10 A, I _B = 1.0 A
V _{CE(sat)}	Voltage (Note 1)		1.0 2.5		2.5	V	$I_C = 12 \text{ A}, I_B = 1.2 \text{ A}$ $I_C = 20 \text{ A}, I_B = 5.0 \text{ A}$
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		3.3		3.3	V	I _C = 20 A, I _B = 5.0 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)				1.8	V	I _C = 10 A, V _{CE} = 5.0 V I _C = 12 A, V _{CE} = 5.0 V
SECOND BRE.	AKDOWN						
IS/b	Second Breakdown Collector Current with base forward biased	5.0 0.9		5.0 0.9		A A	t = 1.0 s (non repetitive), V_{CE} = 28 \ V_{CE} = 45 \ V
E _{S/b}	Second Breakdown Energy with base reversed biased	13		13		mJ	$I_C = 12 \text{ A}, \ V_{BE(off)} = -4.0 \text{ V},$ $L = 180 \mu\text{H}, \ R_B = 20 \Omega$
DYNAMIC CH	ARACTERISTICS						
C _{ob}	Output Capacitance		400		400	pF	V _{CB} = 10 V, I _E = 0
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	12		12			I _C = 2.0 A, V _{CE} = 10 V, f = 5.0 MH
SWITCHING C	CHARACTERISTICS E LOAD			-			
tr :	Rise Time		0.5		0.5	μs μs	$V_{CC} = 30 \text{ V}, I_{C} = 12 \text{ A}, I_{B1} = 1.2 \text{ A}$ $V_{CC} = 30 \text{ V}, I_{C} = 10 \text{ A}, I_{B1} = 1.0 \text{ A}$
ts	Storage Time		1.5			μs	V _{CC} = 30 V, I _C = 12 A, I _{B1} = I _{B2} = 1.2 A
			1 N-1		1.5	μs	V _{CC} = 30 V, I _C = 10 A, I _{B1} = I _{B2} = 1.0 A
**	Fall Time		0.5			μs	V _{CC} = 30 V, I _C = 12 A, I _{B1} = I _{B2} = 1.2 A
t _f	ran Time				0.5	μs	V _{CC} = 30 V, I _C = 10 A I _{B1} = I _{B2} = 1.0 A


IOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

FAIRCHILD • 2N5038 • 2N5039

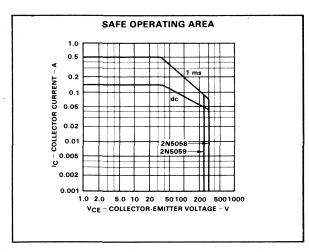
2N5058 2N5059

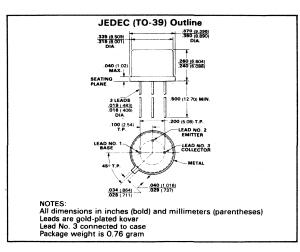
NPN SILICON

POWER DEVICES DESIGNED PRIMARILY FOR LARGE SIGNAL. LOW POWER, AUDIO FREQUENCY AMPLIFIER APPLICATIONS

- 5.0 W DISSIPATION AT 25°C CASE
- 150 mA MAXIMUM CONTINUOUS COLLECTOR CURRENT
- HIGH VOLTAGE V_{CEO} 250 V MIN (2N5059), 300 V MIN (2N5058)

ABSOLUTE	MAXIMUM	RATINGS	(Note 1)	

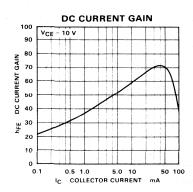

Maximum	Voltages and Currents	2N5058	2N5059
V_{CEO}	Collector to Emitter Voltage	300 V	250 V
VCBO	Collector to Base Voltage	300 V	250 V
VEBO	Emitter to Base Voltage	7.0 V	7.0 V
IC	Continuous Collector Current	150 mA	150 mA
Maximum	Power Dissipation		
PD	Total Dissipation @ 25°C Case Temperature		5.0 W
	Derate linearly from 25°C		$28.6\mathrm{mW/^{\circ}C}$

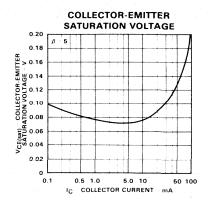

Maximum Temperatures

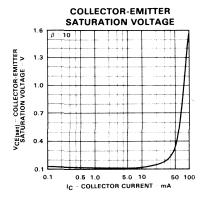
-65°C to +200°C Storage and Operation Junction Temperatures

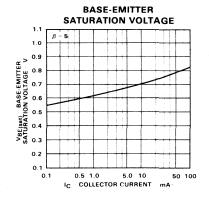
Thermal Characteristics

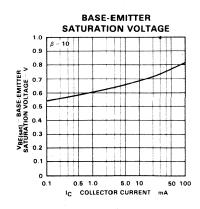
Thermal Resistance, Junction to Case $R_{\theta}JC$


35°C/W


FAIRCHILD • 2N5058 • 2N5059


SYMBOL	CHARACTERISTIC	2N	5058	2N	5059		TEST SOME TIGHTS
STIMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
OFF CHARAC	TERISTICS		3 11				
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	300		250		, V	I _C = 30 mA, I _B = 0
V _{CBO}	Collector-Base Breakdown Voltage	300		225		V	I _C = 0.1 mA, I _E = 0
VEBO	Emitter-Base Breakdown Voltage	7.0		6.0		V, -	I _E = 0.1 mA, I _C = 0
	4		0.05		0.05	μА	V _{CB} = 100 V, I _E = 0
СВО	Collector Cutoff Current		0.02		0.02	mA	$V_{CB} = 100 \text{ V}, I_{E} = 0,$ $T_{C} = 125^{\circ} \text{ C}$
¹ EBO	Emitter Cutoff Current		0.01		0.01	mΑ	V _{EB} = 5.0 V, I _C = 0
ON CHARACT	ERISTICS	-					
hFE	DC Current Gain (Note 1)	10 35 35 10	150	10 30 30	150		$I_C = 5.0 \text{ mA}, V_{CE} = 25 \text{ V}$ $I_C = 30 \text{ mA}, V_{CE} = 25 \text{ V}$ $I_C = 100 \text{ mA}, V_{CE} = 25 \text{ V}$ $I_C = 30 \text{ mA}, V_{CE} = 25 \text{ V}, T_C = -55^\circ$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.0		1.0	V	I _C = 30 mA, I _B = 3.0 mA
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		0.85		0.85	V	I _C = 30 mA, I _B = 3.0 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		0.82		0.82	V	I _C = 30 mA, V _{CE} = 25 V
DYNAMIC CH.	ARACTERISTICS						
C _{cb}	Collector-Base Capacitance		10		10	pF	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz
C _{eb}	Emitter-Base Capacitance		75		75	pF	V _{EB} = 0.5 V, I _C = 0, f = 1.0 MHz
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	1.5	8.0	1.5	8.0		I _C = 10 mA, V _{CE} = 25 V, f = 20 MH


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


FAIRCHILD • 2N5058 • 2N5059

NPN SILICON

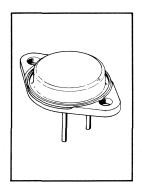
2N5067 2N5068 2N5069

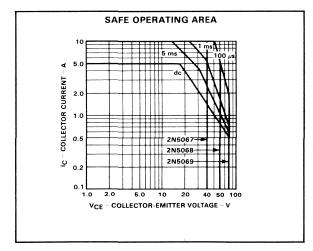
DESIGNED FOR USE IN POWER AMPLIFIER AND SWITCHING CIRCUITS

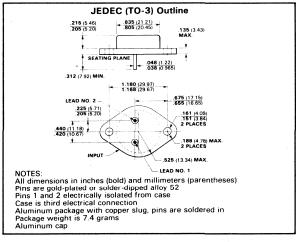
- 87.5 W DISSIPATION AT 25°C CASE
- 5.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT

2N5067

2N5068

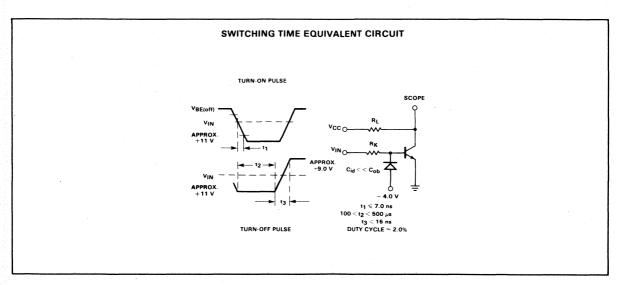

2N5069

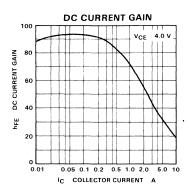

COMPLEMENTS TO 2N4901, 2N4902, 2N4903

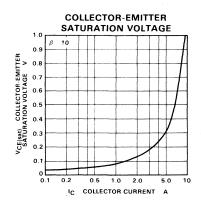

ABSOLUTE MAXIMUM RATINGS (Note 1)

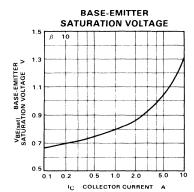
Maximum Voltages and Currents

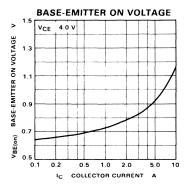
VCEO	Collector to Emitter Voltage	60 V	80 V	
VCBO	Collector to Base Voltage	Collector to Base Voltage 40 V		80 V
V _{EBO}	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
	Continuous Collector Current	5.0 A	5.0 A	5.0 A
I _C	Continuous Base Current	1.0 A	1.0 A	1.0 A
Maximum Powe	er Dissipation			
$P_{.D}$	Total Dissipation @ 25°C Case Temper		87.5 W	
	Derate Linearly from 25°C			0.5 W/°C
Maximum Tem	peratures			
T _J , T _{stq}	Storage and Operation Junction Temp	−65°C t	:o +200°C	
Thermal Charac	teristics			
$R_{ heta}JC$	Thermal Resistance, Junction to Case		2.0 °C/W	

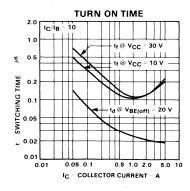


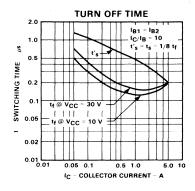

FAIRCHILD • 2N5067 • 2N5068 • 2N5069


ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


0.44001	CHARACTERISTIC	2N5067		2N	5068	2N	5069		TEST COMPLETIONS
SYMBOL		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARAC	TERISTICS								
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80	, in	V	I _C = 200 mA, I _B = 0
:			1.0			1		mA	V _{CE} = 40 V, I _B = 0
CEO	Collector Cutoff Current				1.0			mA	$V_{CE} = 60 \text{ V}, I_{B} = 0$
							1.0	mA	$V_{CE} = 80 \text{ V}, I_B = 0$
			1.0					mΑ	V _{CE} - 40 V, V _{BE} 1.5 V
					1.0			mΑ	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V}$
•							1.0	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V}$
CEX	Collector Cutoff Current		2.0					mA	$V_{CE} = 40 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
					2.0			mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
							2.0	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
			1.0					mΑ	V _{CB} = 40 V, I _E = 0
СВО	Collector Cutoff Current	1			1.0			mA	$V_{CB} = 60 \text{ V}, I_{E} = 0$
							1.0	mA	$V_{CB} = 80 \text{ V}, I_{E} = 0$
^I EBO	Emitter Cutoff Current		1.0		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0
N CHARACT	ERISTICS					-	'		
	DC Course of Color (Name 1)	20	80	20	80	20	80		I _C = 1.0 A, V _{CE} = 2.0 V
hFE	DC Current Gain (Note 1)	7.0		7.0		7.0			$I_C = 5.0 \text{ A}, V_{CE} = 2.0 \text{ V}$
	Collector-Emitter Saturation		0.4		0.4		0.4	v	I _C = 1.0 A, I _B = 0.1 A
V _{CE(sat)}	Voltage (Note 1)		1.5		1.5		1.5	V	$I_C = 5.0 \text{ A}, I_B = 1.0 \text{ A}$
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.2		1.2		1.2	٧	I _C = 1.0 A, V _{CE} = 2.0 V
YNAMIC CH	ARACTERISTICS			*					
fT	Current-Gain-Bandwidth Product	4.0		4.0		4.0		MHz	I _C = 1.0 A, V _{CE} = 10 V, f = 1.0 MH
h _{fe}	Small Signal Current Gain	20		20		20			I _C = 0.5 A, V _{CE} = 10 V, f = 1.0 kHz
	1	1	1	1	ı	1	1		


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.



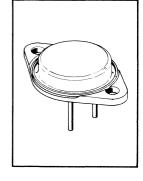


NPN SILICON

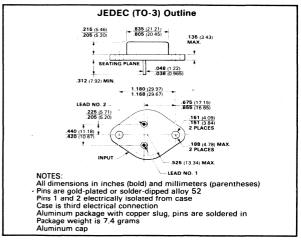
2N5301 2N5302 2N5303

HIGH POWER TRANSISTORS FOR USE IN POWER AMPLIFIER AND SWITCHING CIRCUITS APPLICATIONS

- 200 W DISSIPATION AT 25°C CASE
- 30 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS 2N4398 (2N5301) 2N4399 (2N5302)


ABSOLUTE MAXIMUM RATINGS (Note 1)

ADSOLUTE MA	CINION RATINGS (Note 1)			
Maximum Vol	tages and Currents	2N5301	2N5302	2N5303
V _{CEO}	Collector to Emitter Voltage	40 V	60 V	80 V
VCBO	Collector to Base Voltage	40 V	60 V	80 V
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
l _C	Continuous Collector Current	30 A	30 A	30 A
۱ _B	Continuous Base Current	7.5 A	7.5 A	7.5 A
Maximum Pov	ver Dissipation			
P_{D}	Total Dissipation @ 25°C Case Temp	perature		200 W
_	Derate Linearly from 25°C			1.14 W/°C

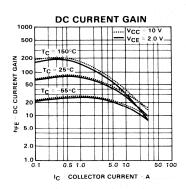

Maximum Temperatures

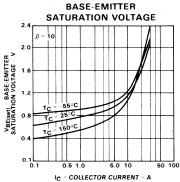
T_J, T_{stg} Storage Thermal Characteristics Storage and Operation Junction Temperatures

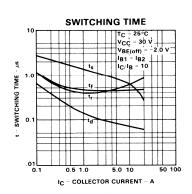
Thermal Resistance, Junction to Case $R_{\theta}JC$

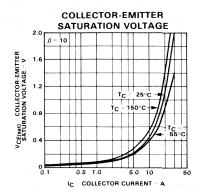
 -65° C to $+200^{\circ}$ C

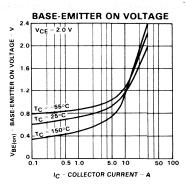
0.875°C/W

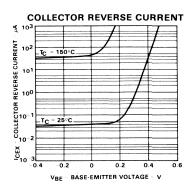

FAIRCHILD • 2N5301 • 2N5302 • 2N5303

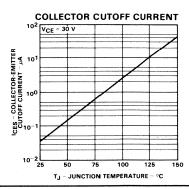

FLECTRICAL	CHARACTERISTICS	(25°C Case Temperature un	nless otherwise noted)


SYMBOL	CHARACTERISTIC	2N	5301	2N	5302	2N5303		UNIT	TEST CONDITIONS	
STWIDGE	CHAHACTEMOTIC	MIN	MAX	MIN	MAX	MIN	MAX	01111	TEST CONDITIONS	
FF CHARAC	TERISTICS				1					
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		>	$I_C = 200 \text{ mA}, I_B = 0$	
			5.0					mA	V _{CE} = 40 V, I _B = 0	
ICEO	Collector Cutoff Current				5.0			mA	$V_{CE} = 60 \text{ V}, I_B = 0$	
							5.0	mA	$V_{CE} = 80 \text{ V}, I_B = 0$	
			1.0					mA	V _{CE} = 40 V, V _{BE} = -1.5 V	
		-			1.0			mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V}$	
							1.0	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V}$	
	-		10					mA	$V_{CE} = 40 \text{ V}, V_{BE} = -1.5 \text{ V},$	
ICEX	Collector Cutoff Current	-	10					''''	$T_C = 150^{\circ} C$	
					10			mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V},$	
					.0			1117	$T_C = 150^{\circ} C$	
							10	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$	
			1.0					mΑ	V _{CB} = 40 V, I _E = 0	
ICBO	Collector Cutoff Current				1.0			mA	V _{CB} = 60 V, I _E = 0	
							1.0	mA	V _{CB} = 80 V, I _E = 0	
IEBO	Emitter Cutoff Current		5.0		5.0		5.0	mA	V _{EB} = 5.0 V, I _C = 0	
N CHARACT	ERISTICS		·	L	L	L		I		
		5.0		5.0					I _C = 30 A, V _{CE} = 3.0 V	
						5.0		-	I _C = 20 A, V _{CE} = 2.0 V	
hFE	DC Current Gain (Note 1)	15	60	15	60				I _C = 15 A, V _{CE} = 3.0 V	
						15	60		$I_C = 10 \text{ A}, V_{CE} = 2.0 \text{ V}$	
v.		40		40		40			$I_C = 1.0 A$, $V_{CE} = 2.0 V$	
			0.75		0.75		1.0	٧	I _C = 10 A, I _B = 1.0 A	
	Collector-Emitter Saturation	1					1.5	V	I _C = 15 A, I _B = 1.5 A	
V _{CE(sat)}	Voltage (Note 1)		2.0		2.0			V	$I_C = 20 \text{ A}, I_B = 2.0 \text{ A}$	
	Voltage (Note 1)	1					2.0	V	$I_C = 20 A$, $I_B = 4.0 A$	
			3.0		3.0			V	I _C = 30 A, I _B = 6.0 A	
	1.00		1.7		1.7		1.7	V	$I_C = 10 \text{ A}, I_B = 1.0 \text{ A}$	
Vpc/	Base-Emitter Saturation		1.8		1.8		2.0	V	$I_C = 15 A$, $I_B = 1.5 A$	
V _{BE(sat)}	Voltage (Note 1)		2.5		2.5			V	$I_C = 20 \text{ A}, I_B = 2.0 \text{ A}$	
							2.5	V	I _C = 20 A, I _B = 4.0 A	
			1.8		1.8			٧	$I_C = 15 \text{ A}, V_{CE} = 2.0 \text{ V}$	
	Base-Emitter "On" Voltage						1.5	·V	I _C = 10 A, V _{CE} = 2.0 V	
V _{BE} (on)	(Note 1)		3.0		3.0			V	$I_C = 30 \text{ A}, V_{CE} = 4.0 \text{ V}$	
							2.5	V	$I_C = 20 \text{ A}, V_{CE} = 4.0 \text{ V}$	
YNAMIC CH.	ARACTERISTICS									
f _T	Current-Gain-Bandwidth Product	2.0		2.0		2.0		MHz	I _C = 1.0 A, V _{CE} = 10 V, f = 1.0 MHz	
h _{fe}	Small Signal Current Gain	40		40		40			I _C = 1.0 A, V _{CE} = 10 V, f = 1.0 kHz	
WITCHING C	HARACTERISTICS				L	L				
tr	Rise Time	T in	1.0		1.0		1.0	μs	$V_{CC} = 30 \text{ V}, I_{C} = 10 \text{ A}, I_{B1} = 1.0 \text{ A},$ $t_{D} = 10-100 \mu\text{s}, \text{ Duty Cycle} = 2.0 \%$	
7		-				-			V _{CC} = 30 V, I _C = 10 A,	
ts	Storage Time	1	2.0		2.0		2.0	μs		
• •		1						1	$I_{B1} = I_{B2} = 1.0 \text{ A}, t_p = 10-100 \mu\text{s}$	

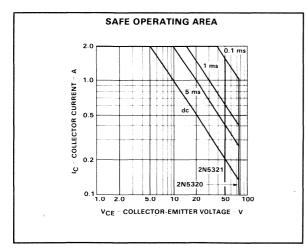

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

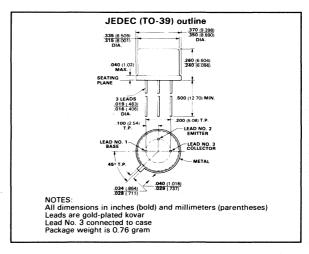

FAIRCHILD • 2N5301 • 2N5302 • 2N5303





NPN SILICON

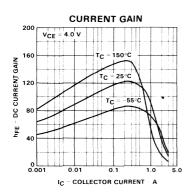

2N5320 2N5321

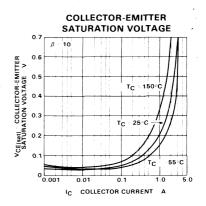

GENERAL PURPOSE POWER DEVICES FOR SMALL SIGNAL, MEDIUM POWER APPLICATIONS

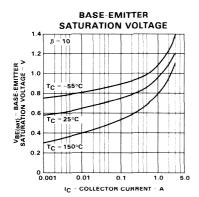
- 10 W DISSIPATION AT 25°C CASE
- 2.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS 2N5322, 2N5323

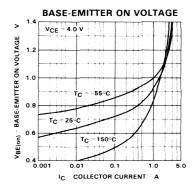
ABSOLUTE MAXIMUM RATINGS (Note 1)

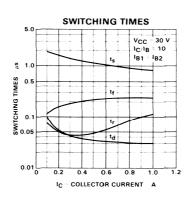
ADSULUTE MA	CIMUM RATINGS (Note 1)		1	
Maximum Vol	tages and Currents	2N5320	2N5321	1
$v_{\sf CEO}$	Collector to Emitter Voltage	75 V	50 V	
V _{CBO}	Collector to Base Voltage	100 V	75 V	
V_{EBO}	Emitter to Base Voltage	7.0 V	7.0 V	
IC	Continuous Collector Current	2.0 A	2.0 A	
ΙΒ	Continuous Base Current	1.0 A	1.0 A	
Maximum Pow	er Dissipation			AA
PD	Total Dissipation @ 25°C Case Temperature		10 W	
	Derate Linearly from 25°C	(0.057 W/°C	
Maximum Tem	peratures			
TJ, T _{stg}	Storage and Operation Junction Temperatures	-65° C	C to +200°C	U U
Thermal Chara	cteristics		1	
$R_{ heta}JC$	Thermal Resistance, Junction to Case		17.5°C/W	






FAIRCHILD • 2N5320 • 2N5321


CYMPOL	CHARACTERISTIC	2N	5320	2N	5321	UNIT	
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX		TEST CONDITIONS
F CHARAC	TERISTICS						
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	75		50		V	I _C = 100 mA, I _B = 0
			0.1		0.1	mA mA	V _{CE} = 100 V, V _{BE} = -1.5 V V _{CE} = 75 V, V _{BE} = -1.5 V
CEX	Collector Cutoff Current		5.0			mA	$V_{CE} = 70 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
					5.0	mA	$V_{CE} = 45 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
^I EBO	Emitter Cutoff Current		0.1		0.1	mA mA	V _{EB} = 7.0 V, I _C = 0 V _{EB} = 5.0 V
N CHARACT	ERISTICS	<u> ئىندەب بىرىنىڭ چىستىلات.</u>					
hFE	DC Current Gain (Note 1)	10 30	130	10 40	250		I _C = 1.0 A, V _{CE} = 2.0 V I _C = 0.5 A, V _{CE} = 4.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		0.5		0.8	v	I _C = 0.5 A, I _B = 0.05 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.1		1.4	V ,	I _C = 0.5 A, V _{CE} = 4.0 V
YNAMIC CH	ARACTERISTICS			•			
fΤ	Current-Gain-Bandwidth Product	5.0		5.0		MHz	I _C = 0.05 A, V _{CE} = 4.0 V, f = 10 MHz
WITCHING C	CHARACTERISTICS						
ton	Turn On Time		80		80	μs	$I_C = 500 \text{ mA}, V_{CC} = 30 \text{ V},$ $I_{B1} = 50 \text{ mA}$
^t off	Turn Off Time		800		800	μs	I _C = 500 mA, V _{CC} = 30 V, I _{B1} = I _{B2} = 50 mA


FAIRCHILD • 2N5320 • 2N5321

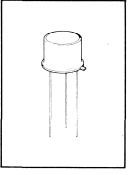
PNP SILICON

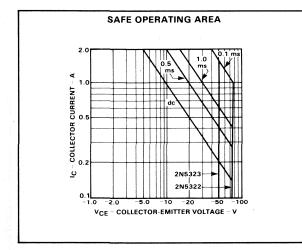
2N5322 2N5323

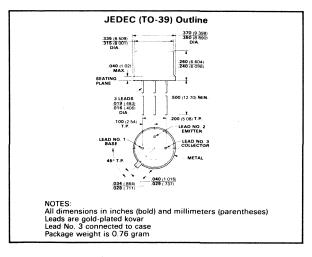
GENERAL PURPOSE POWER DEVICES FOR SMALL SIGNAL, MEDIUM POWER APPLICATIONS

- 10 W DISSIPATION AT 25°C CASE
- 2.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT 2N5320, 2N5321

ABSOLUTE MAXIMUM RATINGS (Note 1)

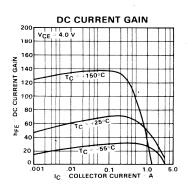

Maximum Vo	oltages and Currents
VCEO	Collector to Emitter Voltage
VCBO	Collector to Base Voltage
VEBO	Emitter to Base Voltage
IC	Continuous Collector Current
ΙΒ	Continuous Base Current
Maximum Po	ower Dissipation
P_{D}	Total Dissipation @ 25°C Case Temperature
	Derate Linearly from 25°C
Maximum Te	emperatures
TJ, T _{sta}	Storage and Operation Junction Temperatures
Thermal Cha	racteristics
$R_{ heta}$ JC	Thermal Resistance, Junction to Case

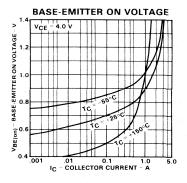

2N5322	2N5323
-75 V	-50 V
-100 V	−75 V
−7.0 V	-7.0 V
-2.0 A	2.0 A
1.0 A	1.0 A
	10 W
	0.057 W/°C

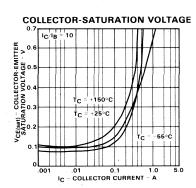

0.057 W/°C

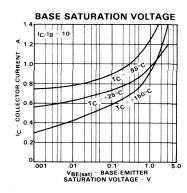
-65°C to +200°C

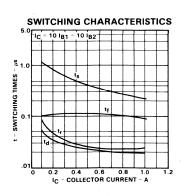
17.5°C/W




FAIRCHILD • 2N5322 • 2N5323


ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


SYMBOL	CHARACTERISTIC	2N5322		2N5	323	UNIT	TEST CONDITIONS	
STIMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNII	TEST CONDITIONS	
FF CHARACT	ERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-75		-50		V 1	I _C = 0.1 mA, I _B = 0	
			0.1			mA	V _{CE} = -100 V, V _{BE} = 1.5 \	
					0.1	mA	$V_{CE} = -75 \text{ V}, V_{BE} = 1.5 \text{ V}$	
ICEX	Collector Cutoff Current		5.0			mA	$V_{CE} = -70 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
					5.0	mA	$V_{CE} = -45 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
IEBO	Emitter Cutoff Current		0.1			mA	V _{EB} = -7.0 V, I _C = 0	
IEBO	Emitter Cutori Current			-	0.1	mA	$V_{EB} = -5.0 \text{ V, I}_{C} = 0$	
N CHARACTE	RISTICS							
hFE	DC Current Gain (Note 1)	10		10			I _C = 1.0 A, V _{CE} = -2.0 V	
"FE		30	130	40	250		$I_C = 0.5 A$, $V_{CE} = -4.0 V$	
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		-0.7		-1.2	V	I _C = 0.5 A, I _B = 0.05 A	
V _{BE} (on)	Base-Emitter "On" Voltage (Note 1)		-1.1		-1.4	V	I _C = 0.5 A, V _{CE} = -4.0 V	
YNAMIC CHA	RACTERISTICS		<u> </u>				<u></u>	
f _T	Current-Gain-Bandwidth Product	5.0		5.0	-	MHz	I _C = 0.05 A, V _{CE} = -4.0 V, f = 10 MHz	
VITCHING CH	IARACTERISTICS		-			-		
t _{on}	Turn On Time		100		100	μs	$I_C = 500 \text{ mA}, V_{CC} = -30 \text{ V}$ $I_{B1} = 50 \text{ mA}$	
toff	Turn Off Time		1000		1000	μs	$I_C = 500 \text{ mA}, V_{CC} = -30 \text{ V}$ $I_{B1} = I_{B2} = 50 \text{ mA}$	


FAIRCHILD • 2N5322 • 2N5323

NPN SILICON

2N5334 2N5335

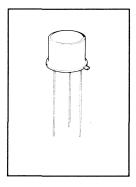
DESIGNED AS GENERAL PURPOSE MEDIUM POWER DEVICE FOR SWITCHING APPLICATIONS

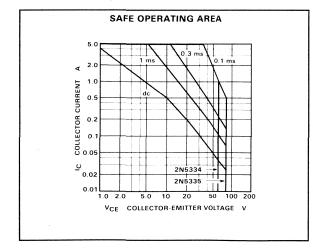
- 6.0 W DISSIPATION AT 25°C CASE
- 3.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- LOW LEAKAGE, I_{CES(MAX)} 100 μA @ T_C = 150°C

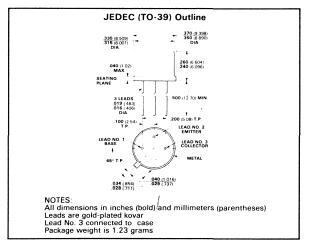
ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum Voltages and Currents

VCEO	Collector to Emitter Voltage
VCBO	Collector to Base Voltage
VEBO	Emitter to Base Voltage
ıc	Continuous Collector Current
I _B	Continuous Base Current
Maximum	Power Dissipation
Pn	Total Dissipation @ 25°C Case Tempera

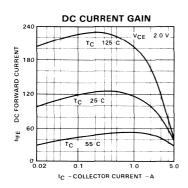

P_D Total Dissipation @ 25°C Case Temperature Derate Linearly from 25°C

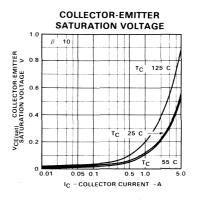

Maximum Temperatures

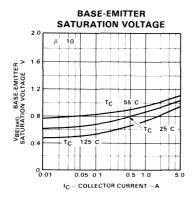

T_J,T_{stg} Storage and Operation Junction Temperatures Thermal Characteristics

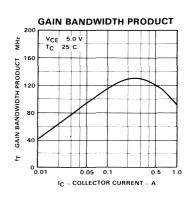
 $R_{ heta JC}$ Thermal Resistance, Junction to Case

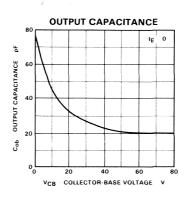
2N5334	2N5335
60 V	80 V
60 V	80 V
8.0 V	8.0 V
3.0 A	3.0 A
1.0 A	1.0 A
	6.0 W 34 mW/°C
-65°C	to +200°C
	29.1°C/W





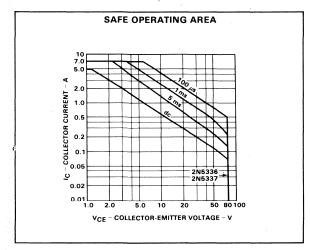


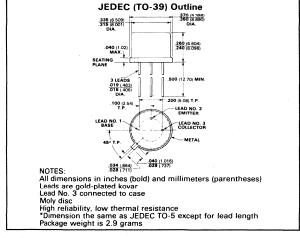

FAIRCHILD • 2N5334 • 2N5335


SYMBOL	CHARACTERISTIC	2N5334		2N5335				
		MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARAC	TERISTICS				!			
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80		V	I _C = 50 mA, I _B = 0	
CEX	Collector Cutoff Current		5.0 0.5		5.0 0.5	μΑ μΑ mA mA	V _{CE} = 55 V, V _{BE} = -1.5 V V _{CE} = 75 V, V _{BE} = -1.5 V V _{CE} = 55 V, V _{BE} = -1.5 V, T _C = 150° C V _{CE} = 75 V, V _{BE} = -1.5 V,	
СВО	Collector Cutoff Current		5.0		5.0	μA μA	T _C = 150°C V _{CB} = 60 V, I _E = 0 V _{CB} = 80 V, I _E = 0	
IEBO	Emitter Cutoff Current	1	0.1		0.1	mA	V _{EB} = 8.0 V, I _C = 0	
ON CHARACT	ERISTICS	- 	*			in the		
h _{FE}	DC Current Gain (Note 1)	30	150	30	150		I _C = 1.0 A, V _{CE} = 2.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		0.7		0.7	V	I _C = 2.0 A, I _B = 0.2 A	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		1.5		1.5	V	I _C = 2.0 A, I _B = 0.2 A	
YNAMIC CH	ARACTERISTICS				L			
C _{ib}	Input Capacitance		250		250	pF	V _{EB} = 2.0 V, I _C = 0, f = 0.1 MHz	
C _{ob}	Output Capacitance		75		75	pF	V _{CB} = 10 V, I _E = 0, f = 0.1 MHz	
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	4.0		4.0	-		I _C = 100 mA, V _{CE} = 10 V, f = 10 MHz	
SWITCHING C	HARACTERISTICS							
t _r	Rise Time		50		50	μς	$V_{CC} = 20 \text{ V, I}_{C} = 1.0 \text{ A,}$ $I_{B1} = 100 \text{ mA, t}_{p} = 10 \mu \text{s,}$ Duty Cycle 1 kHz	
t _s	Storage Time		950		950	μs	V _{CC} = 20 V, I _C = 1.0 A,	
tf	Fall Time		100		100	μs	$I_{B1} = I_{B2} = 100 \text{ mA}, t_p = 10 \mu s,$ Duty Cycle 1 kHz	

NPN SILICON

2N5336 2N5337


MEDIUM POWER TRANSISTORS DESIGNED FOR SWITCHING AND WIDE BAND AMPLIFIER APPLICATIONS


- 6.0 W DISSIPATION AT 25°C CASE
- 5.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 1.2 V V_{CE(sat)} AT 5.0 A

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum Volta	ages and Currents
V _{CEO}	Collector to Emitter Voltage
V _{CBO}	Collector to Base Voltage
VEBO	Emitter to Base Voltage
lc l	Continuous Collector Current
1 _C	Peak Collector Current
I _B	Continuous Base Current
Maximum Powe	er Dissipation
PD	Total Dissipation @ 25°C Case Temperature
_	Derate linearly from 25°C
Maximum Tem	peratures
T _J , T _{stg}	Storage and Operation Junction Temperatures
Thermal Charac	teristics
$R_{ heta}JC$	Thermal Resistance, Junction to Case

2N5336	2N5337	· _ · · · · · · · · · · · · · · · · · ·
80 V	80 V	
80 V	80 V	
6.0 V	6.0 V	
5.0 A	5.0 A	
7.0 A	7.0 A	1 6 3
1.0 A	1.0 A	
	6.0 W	
3	4.3 mW/°C	
−65°(C to +200°C	
	29.2°C/W	

FAIRCHILD • 2N5336 • 2N5337

SYMBOL	CHARACTERISTIC	2N5336		2N5337			
STWBOL		MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
FF CHARAC	TERISTICS						
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	80		80		V	I _C = 50 mA, I _B = 0
CEO	Collector Cutoff Current		0.1		0.1	mA	V _{CE} = 75 V, I _B = 0
CEX	Collector Cutoff Current		0.01		0.01	mA mA	$V_{CE} = 75 \text{ V}, V_{BE} = -1.5 \text{ V}$ $V_{CE} = 75 \text{ V}, V_{BE} = -1.5 \text{ V}$ $T_{C} = 150^{\circ}\text{C}$
СВО	Collector Cutoff Current		0.01		0.01	mA	V _{CB} = 80 V, I _E = 0
IEBO	Emitter Cutoff Current		0.1		0.1	mA	V _{EB} = 6.0 V, I _C = 0
N CHARACT	ERISTICS			1			
hFE	DC Current Gain (Note 1)	30 30 20	120	60 60 40	240		$I_C = 0.5 \text{ A}, V_{CE} = 2.0 \text{ V}$ $I_C = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V}$ $I_C = 5.0 \text{ A}, V_{CE} = 2.0 \text{ V}$
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		0.7 1.2		0.7 1.2	v v	I _C = 2.0 A, I _B = 0.2 A I _C = 5.0 A, I _B = 0.5 A
VBE(sat)	Base-Emitter Saturation Voltage (Note 1)		1.2 1.8		1.2 1.8	V	I _C = 2.0 A, I _B = 0.2 A I _C = 5.0 A, I _B = 0.5 A
YNAMIC CH	ARACTERISTICS						
fŢ	Current-Gain-Bandwidth Product	30		30		MHz	$I_C = 500 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 10 MHz
C _{ob}	Output Capacitance		250		250		V _{CB} = 10 V, I _E = 0, f = 0.1 MHz
C _{ib}	Input Capacitance		1000		1000	pF	V _{EB} = 2.0 V, I _C = 0, f = 0.1 MHz
WITCHING C	HARACTERISTICS DAD						
t _d	Delay Time		0.1		0.1	μs	V _{CC} = 40 V, I _C = 2.0 A,
tr .	Rise Time		0.1		0.1	μs	$I_{B1} = 200 \text{ mA}, t_p = 10 \mu s,$ Duty Cycle = 1%
							, _,-,-

2.0

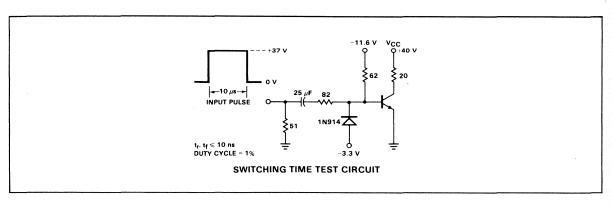
0.2

2.0

0.2

μs

μs

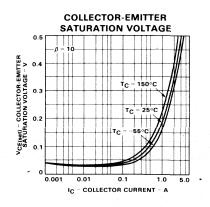

NOTE: 1. Pulse conditions: Length = $300 \mu s$, Duty Cycle = 2%.

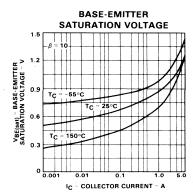
Storage Time

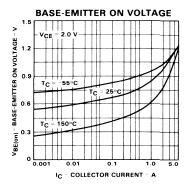
Fall Time

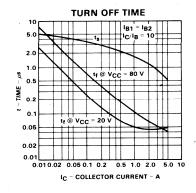
ts

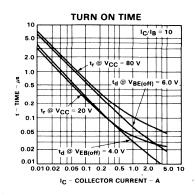

tf



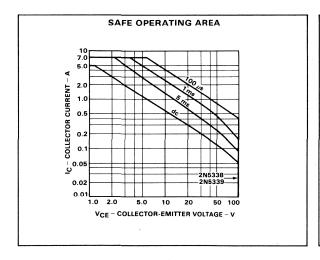

 $V_{CC} = 40 \text{ V}, I_{C} = 2.0 \text{ A},$

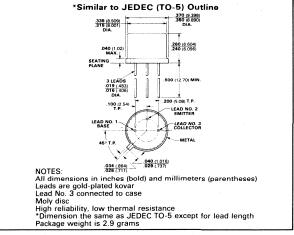

Duty Cycle = 1%


 $I_{B1} = I_{B2} = 200 \text{ mA}, t_p = 10 \mu s,$



2N5338 2N5339

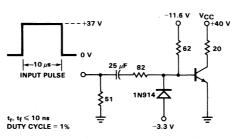

NPN SILICON


MEDIUM POWER TRANSISTORS DESIGNED FOR SWITCHING AND WIDE BAND AMPLIFIER APPLICATIONS

- 6.0 W DISSIPATION AT 25°C CASE
- 5.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 1.2 V V_{CE(sat)} AT 5.0 A

ABSOLUTE MAXIMUM RATINGS (Note 1)

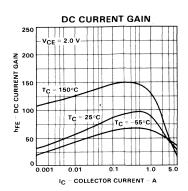
Maximum Vol	tages and Currents	2N5338	2N5339	<u></u>
VCEO	Collector to Emitter Voltage	100 V	100 V	
V _{CBO}	Collector to Base Voltage	100 V	100 V	
VEBO	Emitter to Base Voltage	6.0 V	6.0 V	
l _C	Continuous Collector Current	5.0 A	5.0 A	
۱č	Peak Collector Current	7.0 A	7.0 A	
I _B	Continuous Base Current	1.0 A	1.0 A	
Maximum Pow	ver Dissipation			
· P _D	Total Dissipation @ 25°C Case Temperature		6.0 W	
_	Derate linearly from 25°C	3	4.3 mW/°C	
Maximum Ten	peratures			
T_J, T_sta	Storage and Operation Junction Temperatures	−65°C	to +200°C	
Thermal Chara	cteristics			
$R_{ heta}JC$	Thermal Resistance, Junction to Case		29.2 °C/W	

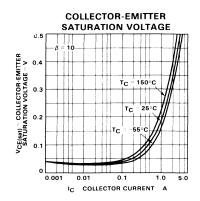


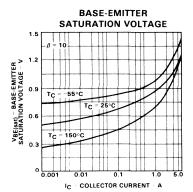
FAIRCHILD • 2N5338 • 2N5339

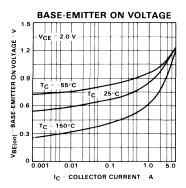
CVMPOL	CHARACTERISTIC	2N5338		2N5339				
SYMBOL		MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
OFF CHARAC	TERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	100		100		V	I _C = 50 mA, I _B = 0	
ICEO	Collector Cutoff Current	agrice	0.1		0.1	mA	V _{CE} = 90 V, I _B = 0	
CEX	Collector Cutoff Current		0.01 1.0		0.01	mA mA	V _{CE} = 90 V, V _{BE} = -1.5 V V _{CE} = 90 V, V _{BE} = 1.5 V, T _C - 150° C	
ІСВО	Collector Cutoff Current		0.01		0.01	mA	V _{CB} = 100 V, I _E = 0	
IEBO	Emitter Cutoff Current		0.1		0.1	mA	V _{EB} = 6.0 V, I _C = 0	
ON CHARACT	ERISTICS							
hFE	DC Current Gain (Note 1)	30 30 20	120	60 60 40	240		I _C = 0.5 A, V _{CE} = 2.0 V I _C = 2.0 A, V _{CE} = 2.0 V I _C = 5.0 A, V _{CE} = 2.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		0.7 1.2		0.7 1.2	V V	I _C = 2.0 A, I _B = 0.2 A I _C = 5.0 A, I _B = 0.5 A	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		1.2 1.8		1.2 1.8	V V	I _C = 2.0 A, I _B = 0.2 A I _C = 5.0 A, I _B = 0.5 A	
YNAMIC CH.	ARACTERISTICS							
fΤ	Current-Gain-Bandwidth Product	30		30		MHz	$I_C = 500 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 10 MHz	
C _{ob}	Output Capacitance		250		250		V _{CB} = 10 V, I _E = 0, f = 0.1 MHz	
C _{ib}	Input Capacitance		1000		1000	pF	V _{EB} = 2.0 V, I _C = 0, f = 0.1 MHz	
WITCHING C	HARACTERISTICS DAD	•	-	•				
t _d	Delay Time		0.1		0.1	μs	V _{CC} = 40 V, I _C = 2.0 A,	
tr	Rise Time		0.1		0.1	μs	I _{B1} = 200 mA, t _p = 10 μs, Duty Cycle = 1%	
ts	Storage Time		2.0		2.0	μs	V _{CC} = 40 V, I _C = 2.0 A,	
tf	Fall Time		0.2		0.2	μs	$I_{B1} = I_{B2} = 200 \text{ mA}, t_p = 10 \mu \text{s},$	

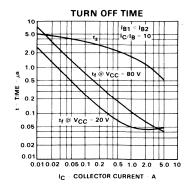
OTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

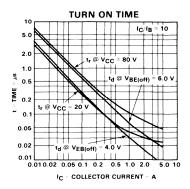

tf




μs


Duty Cycle = 1%


SWITCHING TIME TEST CIRCUIT

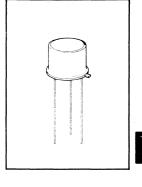


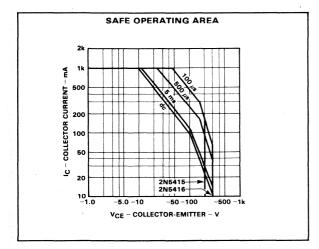
PNP SILICON

2N5415 2N5416

DESIGNED FOR HIGH-SPEED SWITCHING AND LINEAR-AMPLIFIER APPLICATIONS IN MILITARY, INDUSTRIAL AND COMMERCIAL EQUIPMENT

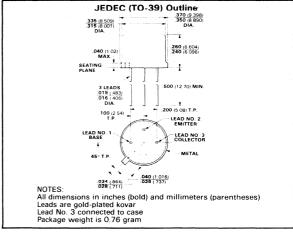
- 10 W DISSIPATION AT 25°C CASE
- 1 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- UP TO 350 V VCBO RATING (2N5416)
- COMPLEMENTS TO 2N3439, 2N3440


ABSOLUTE MAXIMUM RATINGS


 $R_{\theta JC}$

 T_{P}

Maximum Vo	oltages and Currents	2N5415	2N5416
` V _{CE}	Collector to Emitter Voltage	-200 V	-300 V
V _{CB}	Collector to Base Voltage	-200 V	-350 V
VEB	Emitter to Base Voltage	-4.0 V	-4.0 V
lc	Continuous Collector Current	1.0 A	1.0 A
۱ _B	Continuous Base Current	0.5 A	0.5 A
Maximum Po	ower Dissipation		
PD	Total Dissipation @ 25°C Case Temperature		10 W
	Derate Linearly from 25°C		1.14 W/°C
Maximum Te	emperatures		
T_{J} , T_{stg}	Storage and Operation Junction Temperatures	-65°	C to +200°C
Thermal Cha	racteristics		

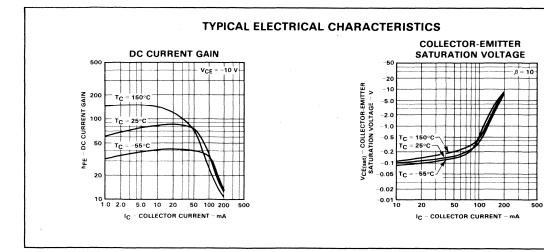

17.5°C/W 255°C

Thermal Resistance, Junction to Case

Maximum Lead Temperature (Soldering, 10 s)

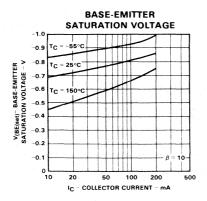
FAIRCHILD • 2N5415 • 2N5416

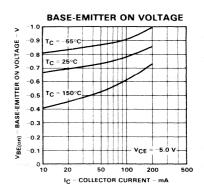
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

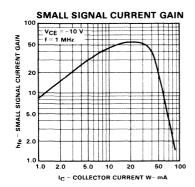

	CHARACTERISTICS	2N5415		2N5	5416		
SYMBOL		MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARACT	TERISTICS			***************************************	<u> </u>		
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-200		-300	-	V	I _C = 50 mA, I _B = 0
V _{CER(sus)}	Collector-Emitter Sustaining Voltage (Note 1)			-350		٧	$I_C = 50$ mA, $R_{BE} = 50 \Omega$
ICEO	Collector Cutoff Current		50		50	μA μA	$V_{CE} = -150 \text{ V}, I_{B} = 0$ $V_{CE} = -250 \text{ V}, I_{B} = 0$
I _{CEV}	Collector Cutoff Current		50		50	μA μA	V _{CE} = -200 V, V _{BE} = 1.5 V V _{CE} = -300 V, V _{BE} = 1.5 V
СВО	Collector Cutoff Current		50		50	μA μA	$V_{CB} = -175 \text{ V, } I_{E} = 0$ $V_{CB} = -280 \text{ V, } I_{E} = 0$
I _{EBO}	Emitter Cutoff Current		20		20	μA μA	$V_{EB} = -4.0 \text{ V}, I_{C} = 0$ $V_{EB} = -6.0 \text{ V}, I_{C} = 0$
N CHARACTI	ERISTICS						
hFE	DC Current Gain (Note 1)	30	150	30	120		$I_C = 50 \text{ mA}, V_{CE} = -10 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-2.5		-2.0	V	I _C = 50 mA, I _B = 5.0 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.5		-1.5	V	I _C = 50 mA, V _{CF} = -10 V

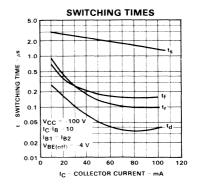
ls/b	Second Breakdown Collector Current with Base Forward Biased	100	100	mA	$V_{CE} = -100 \text{ V}, t = 1.0 \text{ s}$ (non repetitive)

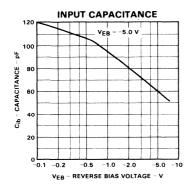
DYNAMIC CHARACTERISTICS

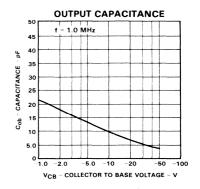

C _{ob}	Output Capacitance		15		15	pF	$V_{CB} = -10 \text{ V}, I_{E} = 0, f = 1.0 \text{ MHz}$
c _{ib}	Input Capacitance		75		75	pF	$V_{EB} = -5.0 \text{ V}, I_{C} = 0, f = 1.0 \text{ MHz}$
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	3.0		3.0			$I_C = 10 \text{ mA}, V_{CE} = -10 \text{ V},$ f = 5.0 MHz
h _{fe}	Small Signal Current Gain	25		25			$I_C = 5.0 \text{ mA}, V_{CE} = -10 \text{ V},$ f = 1.0 kHz
R _e (h _{ie})	Real Part of Common Emitter Small Signal Short-Circuit Impedance		300		300	Ω	$I_C = 5.0 \text{ mA}, V_{CE} = -10 \text{ V},$ f = 1.0 MHz


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.




FAIRCHILD • 2N5415 • 2N5416


TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd)



NPN SILICON

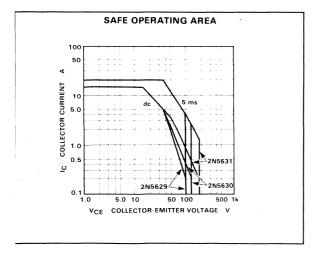
2N5629 2N5630 2N5631

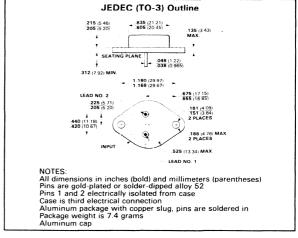
HIGH VOLTAGE, HIGH POWER TRANSISTORS DESIGNED FOR USE IN HIGH POWER AUDIO AMPLIFIER APPLICATIONS AND HIGH VOLTAGE SWITCHING REGULATOR CIRCUITS

- 200 W DISSIPATION AT 25°C CASE
- 16 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- HIGH CURRENT h_{FE}, 25-100 @ 8.0 A, 2.0 V (2N5629)

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum Vo	Itages and Currents	2N5629	2N5630	2N5631
v_{CEO}	Collector to Emitter Voltage	100 V	120 V	140 V
VCBO	Collector to Base Voltage	100 V	120 V	140 V
VEBO	Emitter to Base Voltage	7.0 V	7.0 V	7.0 V
lC .	Continuous Collector Current	16 A	16 A	16 A
1 _B	Continuous Base Current	5.0 A	5.0 A	5.0 A
Maximum Po	wer Dissipation			
PD	P _D Total Dissipation @ 25°C Case Temperature			


PD Total Dissipation @ 25°C Case Temper Derate linearly from 25°C


Maximum Temperatures

T_J, T_{stg} Storage and Operation Junction Temperatures

Thermal Characteristics

 $R_{ heta JC}$ Thermal Resistance, Junction to Case

1.14 W/°C

0.875°C/W

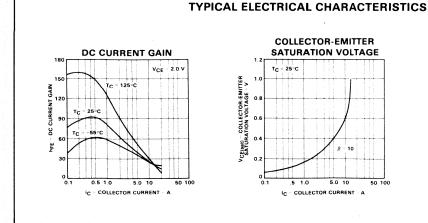
-65°C to +200°C

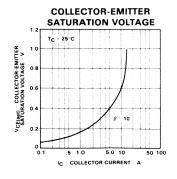
FAIRCHILD • 2N5629 • 2N5630 • 2N5631

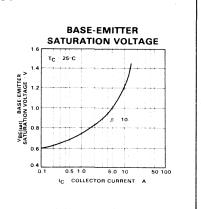
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	2N	5629	2N!	5630	2N5	5631		7507 0040 7404	
STWBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
OFF CHARAC	TERISTICS									
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	100		120		140		V	I _C = 200 mA, I _B = 0	
	0.11		1.0					mA	V _{CE} = 50 V, I _B = 0	

VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	100		120		140		٧	IC = 200 mA, IB = 0
ICEO	Collector Cutoff Current		1.0		1.0		1.0	mA mA mA	V _{CE} = 50 V, I _B = 0 V _{CE} = 60 V, I _B = 0 V _{CE} = 70 V, I _B = 0
ICEX	Collector Cutoff Current		5.0		1.0		1.0	mA mA mA	V _{CE} = 100 V, V _{BE} = -1.5 V V _{CE} = 120 V, V _{BE} = -1.5 V V _{CE} = 140 V, V _{BE} = -1.5 V V _{CE} = 100 V, V _{BE} = -1.5 V, T _C = 150°C
					5.0	3 - 2 - 1	5.0	mA mA	$V_{CE} = 120 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{ C}$ $V_{CE} = 140 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{ C}$
ІСВО	Collector Cutoff Current		1.0		1.0		1.0	mA mA mA	V _{CB} = 100 V, I _E = 0 V _{CB} = 120 V, I _E = 0 V _{CB} = 140 V, I _E = 0
IEBO	Emitter Cutoff Current		1.0		1.0		1.0	mA	V _{EB} = 7.0 V, I _C = 0


ON CHARACTERISTICS

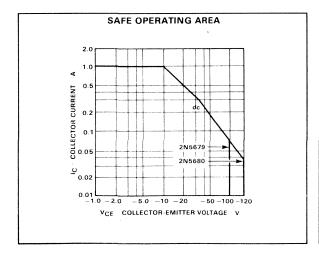

hFE	DC Current Gain (Note 1)	20 4.0	100	20 4.0	80	15 4.0	60		I _C = 8.0 A, V _{CE} = 2.0 V I _C = 16 A, V _{CE} = 2.0 V
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		1.0 2.0		1.0 2.0	-	1.0 2.0	V V	I _C = 10 A, I _B = 1.0 A I _C = 16 A, I _B = 4.0 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		1.8		1.8		1.8	V	I _C = 10 A, I _B = 1.0 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)	-	1.5		1.5		1.5	v	I _C = 8.0 A, V _{CE} = 2.0 V

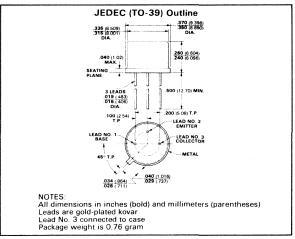

DYNAMIC CHARACTERISTICS

C _{ob}	Output Capacitance		500		500		5.0	рF	V _{CB} = 10 V, I _E = 0, f = 0.1 MHz
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	2.0		2.0		2.0			I _C = 1.0 A, V _{CE} = 20 V, f = 0.5 MHz
h _{fe}	Small Signal Current Gain	15		15		15			I _C = 4.0 A, V _{CE} = 10 V, f = 1.0 kHz

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

PNP SILICON

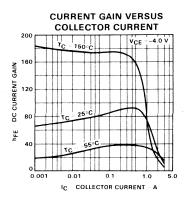

2N5679 2N5680

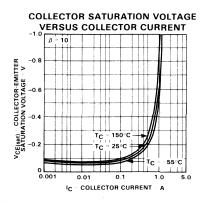

DESIGNED FOR USE AS A DRIVER FOR HIGH POWER TRANSISTORS IN GENERAL PURPOSE AMPLIFIER AND SWITCHING CIRCUIT APPLICATIONS

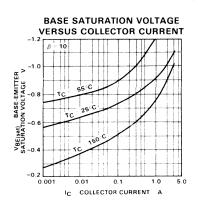
- 10 W DISSIPATION AT 25°C CASE
- 1.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT 2N5681, 2N5682

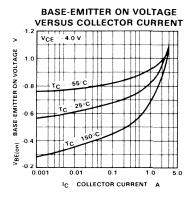
ABSOLUTE MAXIMUM RATINGS (Note 1)

ARSOLOTE MAX	INION RATINGS (Note 1)		-	
Maximum Volt	ages and Currents	2N5679	2N5680	
V _{CEO}	Collector to Emitter Voltage	-100 V	120 V	
V _{CBO}	Collector to Base Voltage	100 V	_120 V	
VEBO	Emitter to Base Voltage	_4.0 V	_4.0 V	
I _C	Continuous Collector Current	1.0 A	1.0 A	1 6 5
I _B	Continuous Base Current	0.5 A	0.5 A	
Maximum Pow	er Dissipation			
P_{D}	Total Dissipation @ 25°C Case Temperature Derate Linearly from 25°C	(10 W 0.057 W/°C	
Maximum Tem	peratures			
T_J, T_{sta}	Storage and Operation Junction Temperatures	−65°C	C to +200°C	TRANS.
Thermal Charac	cteristics			
$R_{ heta}JC$	Thermal Resistance, Junction to Case		17.5°C/W	


FAIRCHILD • 2N5679 • 2N5680

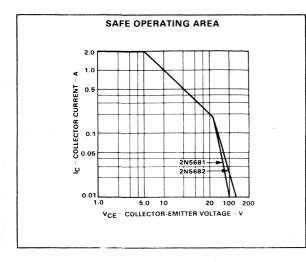

ELECTRICAL CHARACTERISTICS (25° C Case Temperature unless otherwise noted)

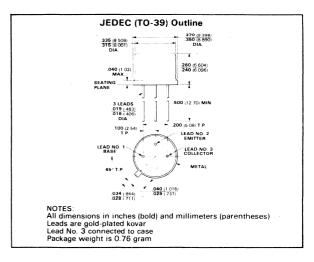

0.44501	CHARACTERISTIC	2N5679		2N!	5680		TEST SOME IT IS IN
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
FF CHARAC	TERISTICS					***************************************	
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-100		-120		V	I _C = 10 mA, I _B = 0
CEO	Collector Cutoff Current		10		10	μΑ μΑ	V _{CE} = -70 V, I _B = 0 V _{CE} = -80 V, I _B = 0
ICEX	Collector Cutoff Current		1.0		1.0	μΑ μΑ mA mA	VCE = -100 V, VBE = 1.5 V VCE = -120 V, VBE = 1.5 V VCE = -100 V, VBE = 1.5 V, TC = 150°C VCE = -120 V, VBE = 1.5 V TC = 150°C
ІСВО	Collector Cutoff Current		1.0		1.0	μΑ μΑ	V _{CB} = -100 V, I _E = 0 V _{CB} = -120 V, I _E = 0
IEBO	Emitter Cutoff Current		1.0		1.0	μΑ	V _{EB} = -4.0 V, I _C = 0
N CHARACT	ERISTICS						
hFE	DC Current Gain (Note 1)	40 5.0	150	40 5.0	150		I _C = 250 mA, V _{CE} = -2.0 V I _C = 1.0 A, V _{CE} = -2.0 V
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		-0.6 -1.0 -2.0		-0.6 -1.0 -2.0	V V	I _C = 250 mA, I _B = 25 mA I _C = 500 mA, I _B = 50 mA I _C = 1.0 A, I _B = 200 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.0		-1.0	٧	I _C = 250 mA, V _{CE} = -2.0 V
YNAMIC CH	ARACTERISTICS			***************************************			
f _T	· Current-Gain-Bandwidth Product	30	-	30		MHz	I _C = 100 mA, V _{CE} = -10 V, f = 10 MHz
C _{ob}	Output Capacitance		50		50	pF	V _{CB} = -20 V, I _E = 0, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	40		40			I _C = 200 mA, V _{CE} = -1.5 V, f = 1.0 kHz


|OTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

FAIRCHILD • 2N5679 • 2N5680

NPN SILICON

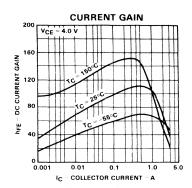

2N5681 2N5682

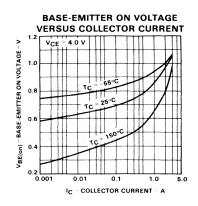

DESIGNED FOR USE AS A DRIVER FOR HIGH POWER TRANSISTORS IN GENERAL PURPOSE AMPLIFIER AND SWITCHING CIRCUIT APPLICATIONS

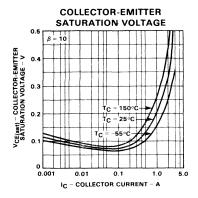
- 10 W DISSIPATION AT 25°C CASE
- 1.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS 2N5679, 2N5680

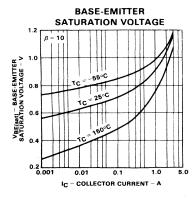
ABSOLUTE MAXIMUM RATINGS (Note 1)

(INION RATINGS (Note 1)			<u></u>
tages and Currents	2N5681	2N5682	
Collector to Emitter Voltage	100 V	120 V	
Collector to Base Voltage	100 V	120 V	
Emitter to Base Voltage	4.0 V	4.0 V	
Continuous Collector Current	1.0 A	1.0 A	
Continuous Base Current	0.5 A	0.5 A	
ver Dissipation			
Total Dissipation @ 25°C Case Temperature		10 W	
Derate Linearly from 25°C	(0.057 W/°C	
peratures			
Storage and Operation Junction Temperatures	-65°C	C to +200°C	
cteristics			
Thermal Resistance, Junction to Case		17.5°C/W	
	tages and Currents Collector to Emitter Voltage Collector to Base Voltage Emitter to Base Voltage Continuous Collector Current Continuous Base Current //er Dissipation Total Dissipation @ 25°C Case Temperature Derate Linearly from 25°C Interpretatures Storage and Operation Junction Temperatures Interpretatures	tages and Currents Collector to Emitter Voltage Collector to Base Voltage Emitter to Base Voltage Continuous Collector Current Continuous Base Current Continuous Base Current Total Dissipation Total Dissipation @ 25°C Case Temperature Derate Linearly from 25°C Inperatures Storage and Operation Junction Temperatures Collector Current Continuous Base Current Cont	tages and Currents Collector to Emitter Voltage Collector to Base Voltage Collector to Base Voltage Emitter to Base Voltage Continuous Collector Current Continuous Base Current Continuous Base Current Total Dissipation Total Dissipation @ 25°C Case Temperature Derate Linearly from 25°C Total Dissipation Unction Temperature Storage and Operation Junction Temperatures Storage and Operation Junction Temperatures Collector to Emitter Voltage 100 V 120 V 4.0 V 6.5 A 6.5


FAIRCHILD • 2N5681 • 2N5682


ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


SYMBOL	CHARACTERISTIC	2N5	681	2N5	682		
STWIBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
FF CHARAC	TERISTICS						
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	100		120		V	I _C = 10 mA, I _B = 0
CEO	Collector Cutoff Current		10		10	μA μA	V _{CE} = 70 V, 1 _B = 0 V _{CE} = 80 V, 1 _B = 0
	Collector Cutoff Current		1.0		1.0	μΑ μΑ	V _{CE} = 100 V, V _{BE} = -1.5 V V _{CE} = 120 V, V _{BE} = -1.5 V V _{CE} = 100 V, V _{BF} = -1.5 V,
CEX	Collector Cutoff Current		1.0		1.0	mA mA	$T_{C} = 150^{\circ} C$ $V_{CE} = 120 \text{ V}, \text{ V}_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ} C$
СВО	Collector Cutoff Current		1.0		1.0	μA μA	V _{CB} = 100 V, I _E = 0 V _{CB} = 120 V, I _E = 0
¹ EBO	Emitter Cutoff Current		1.0		1.0	μА	V _{EB} = 4.0 V, I _C = 0
N CHARACT	ERISTICS						
hFE	DC Current Gain (Note 1)	40 5.0	150	40 5.0	150		I _C = 250 mA, V _{CE} = 2.0 V I _C = 1.0 A, V _{CE} = 2.0 V
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		0.6 1.0 2.0		0.6 1.0 2.0	V V	$I_C = 250 \text{ mA}, I_B = 25 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$ $I_C = 1.0 \text{ A}, I_B = 200 \text{ mA}$
V _{BE} (on)	Base-Emitter "On" Voltage (Note 1)		1.0		1.0	V	I _C = 250 mA, V _{CE} = 2.0 V
YNAMIC CH.	ARACTERISTICS						
fT	Current-Gain-Bandwidth Product	30		30		MHz	I _C = 100 mA, V _{CE} = 10 V, f = 10 MH:
C _{ob}	Output Capacitance		50		50	pF	V _{CB} = 20 V, I _E = 0, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	4.0		4.0			I _C = 200 mA, V _{CE} = 1.5 V f = 1.0 kHz


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

FAIRCHILD • 2N5681 • 2N5682

PNP SILICON

2N5683 2N5684

DESIGNED FOR USE IN HIGH-POWER AMPLIFIER AND SWITCHING CIRCUIT APPLICATIONS

- 300 W DISSIPATION AT 25°C CASE
- 50 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- MAXIMUM DC CURRENT GAIN OF 60 AT 25 A IC
 MAXIMUM COLLECTOR-EMITTER SATURATION VOLTAGE OF 1.0 V AT 25 A IC
- COMPLEMENT TO 2N5685, 2N5686

ABSOLUTE MAXIMUM RATINGS

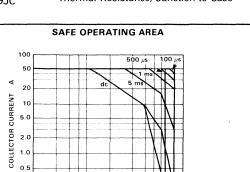
viaximum v	oitages and Currents	2N5683	2N5684
V_{CF}	Collector to Emitter Voltage	-60 V	-80 V
V _{CB}	Collector to Base Voltage	−60 V	-80 V
V _{FB}	Emitter to Base Voltage	−5.0 V	−5.0 V
lC	Continuous Collector Current	50 A	50 A
ΙΒ̈́	Continuous Base Current	15 A	15 A

Maximum Power Dissipation

P _D	Total Dissipation @ 25°C Case Temperature	300 W
	Derate Linearly from 25°C	.085 W/°C

Maximum Temperatures

T_J, T_stq	Storage and	Operation Junction	Temperatures	-65°C to +200°C

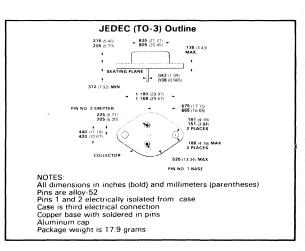

Thermal Characteristics

ي

0.2

1.0 2.0 3.0 5.0

0.584°C/W Thermal Resistance, Junction to Case $R_{\theta JC}$

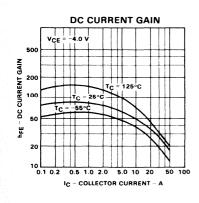


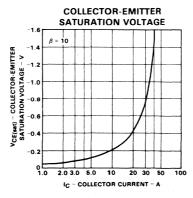
2N5683-

2N5684

VCE COLLECTOR-EMITTER VOLTAGE V

20 30 50

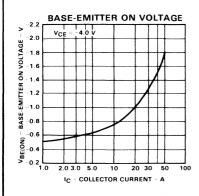


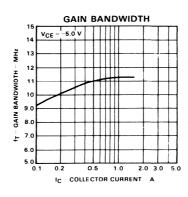

FAIRCHILD • 2N5683 • 2N5684

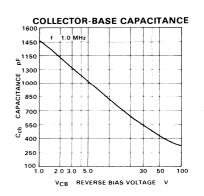
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

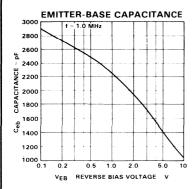
	OUADA OTERIOTIO	2N5683		2N5	684			
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARACT	ERISTICS	•						
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-60		-80		V	I _C = 200 mA, I _B = 0	
^I CEO	Collector Cutoff Current		1.0		1.0	mA	$V_{CE} = -30 \text{ V, } I_{B} = 0$ $V_{CE} = -40 \text{ V, } I_{B} = 0$	
^I CEX	Collector Cutoff Current		10		2.0	mA mA mA	$\begin{split} &V_{CE} = -60 \text{ V}, \text{ V}_{BE} = 1.5 \text{ V}, \\ &V_{CE} = -80 \text{ V}, \text{ V}_{BE} = 1.5 \text{ V}, \\ &V_{CE} = -60 \text{ V}, \text{ V}_{BE} = 1.5 \text{ V}, \\ &T_{C} = 150^{\circ}\text{C} \\ &V_{CE} = -80 \text{ V}, \text{ V}_{BE} = 1.5 \text{ V}, \\ &T_{C} = 150^{\circ}\text{C} \end{split}$	
^I СВО	Collector Cutoff Current		2.0		2.0	mA mA	$V_{CB} = -60 \text{ V}, I_{E} = 0$ $V_{CB} = -80 \text{ V}, I_{E} = 0$	
I _{EBO}	Emitter Cutoff Current		5.0		5.0	mA	$V_{EB} = -5.0 \text{ V, } I_{C} = 0$	
N CHARACTE	ERISTICS	-						
h _{FE}	DC Current Gain (Note 1)	15 5.0	60	15 5.0	60	•	I _C = 25 A, V _{CE} = -2.0 V I _C = 50 A, V _{CE} = -5.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-1.0 -5.0		-1.0 -5.0	V V	I _C = 25 A, I _B = 2.5 mA I _C = 50 A, I _B = 10 mA	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-2.0		-2.0	V	I _C = 25 A, I _B = 2.5 mA	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-2.0		-2.0	V	$I_C = 25 \text{ A}, V_{CE} = -2.0 \text{ V}$	
YNAMIC CHA	ARACTERISTICS							
f _T	Current Gain Bandwidth Product	2.0		2.0		MHz	$I_C = 5.0 \text{ A}, V_{CE} = -10 \text{ V}, f = 1.0 \text{ MH}$	
C _{ob}	Output Capacitance		2000		2000	pF	V _{CB} = -10 V, I _E = 0, f = 0.1 MHz	
h _{fe}	Small Signal Current Gain	15		15			$I_C = 10 \text{ A}, V_{CF} = -5.0 \text{ V}, f = 1.0 \text{ kHz}$	

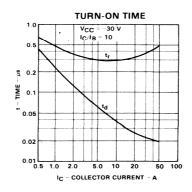
⁾TE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

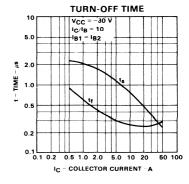


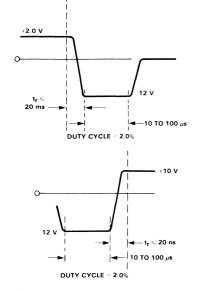


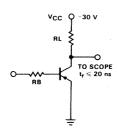


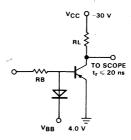

FAIRCHILD • 2N5683 • 2N5684


TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd)



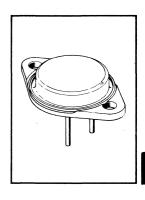


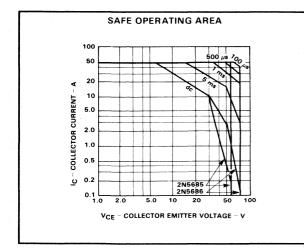


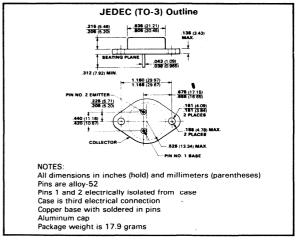


SWITCHING CIRCUIT

NPN SILICON

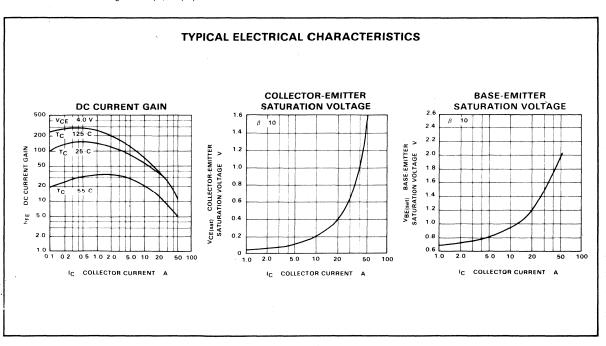

2N5685 2N5686


DESIGNED FOR USE IN HIGH-POWER AMPLIFIER AND SWITCHING CIRCUIT APPLICATIONS


- 300 W DISSIPATION AT 25°C CASE
- 50 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- MAXIMUM DC CURRENT GAIN OF 60 AT IC = 25 A
- MAXIMUM COLLECTOR-EMITTER SATURATION VOLTAGE OF 1.0 V AT 25 A IC
- COMPLEMENT TO 2N5683, 2N5684

ABSOLUTE MAXIMUM RATINGS

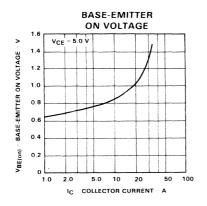
Maximum Vo	oltages and Currents	2N5685	2N5686
V _{CF}	Collector to Emitter Voltage	60 V	80 V
V _{CB}	Collector to Base Voltage	60 V	80 V
VEB	Emitter to Base Voltage	5.0 V	5.0 V
l _C	Continuous Collector Current	50 A	50 A
I _B	Continuous Base Current	15 A	15 A
Maximum Po	ower Dissipation		
PD	Total Dissipation @ 25°C Case Temperature		300 W
_	Derate Linearly from 25°C		0.085 W/°C
Maximum Te	mperatures		
T_J, T_{stg}	Storage and Operation Junction Temperatures	-65°	C to +200°C
Thermal Cha	racteristics		
$R_{oldsymbol{ heta}JC}$	Thermal Resistance, Junction to Case		0.584°C/W

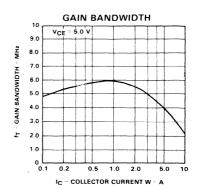


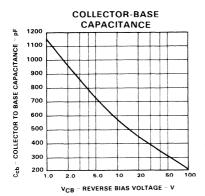
FAIRCHILD • 2N5685 • 2N5686

		2N5685		2N5	686			
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
F CHARACT	ERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80		V	I _C = 200 mA, I _B = 0	
ICEO	Collector Cutoff Current		1.0		1.0	mA	V _{CE} = 30 V, I _B = 0 V _{CE} = 40 V, I _B = 0	
CEX	Collector Cutoff Current		1.0		2.0	mA	VCE = 60 V, VBE = 1.5 V VCE = 80 V, VBE = -1.5 V VCE = 60 V, VBE = -1.5 V, TC = 150°C	
					1.0		V _{CE} = 80 V, V _{BE} = -1.5 V, T _C = 150°C	
СВО	Collector Cutoff Current		2.0		2.0	mA	V _{CB} = 60 V, I _E = 0 V _{CB} = 80 V, I _E = 0	
I _{EBO}	Emitter Cutoff Current		5.0		5.0	mA	V _{EB} = 5.0 V, I _C - 0	
N CHARACTE	ERISTICS							
h _{FE} "	DC Current Gain (Note 1)	15 5.0	60	15 5.0	60		I _C = 25 A, V _{CE} = 2.0 V I _C = 50 A, V _{CE} = 5.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.0 5.0		1.0 5.0	V	I _C = 25 A, I _B = 2.5 A I _C = 50 A, I _B = 10 A	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		2.0		2.0	V	I _C = 25 A, I _B = 2.5 A	
V _{BE(on)}	Base-Emitter "On" Voltage Voltage (Note 1)		2.0		2.0	V	I _C = 25 A, V _{CE} = 2.0 V	
NAMIC CHA	ARACTERISTICS							
f _T	Current Gain Bandwidth Product	2.0		2.0		MHz	I _C = 5.0 A, V _{CE} = 10 V, f = 1.0 MH	
C _{ob}	Output Capacitance		1.2 k		1.2 k	pF	V _{CB} = 10 V, I _E = 0, f = 0.1 MHz	

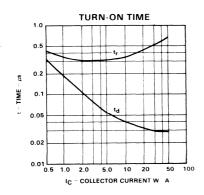
NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

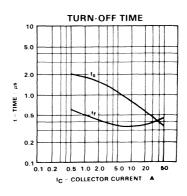

Small Signal Current Gain

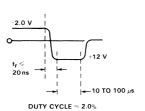


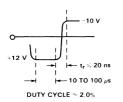

 I_C = 10 A, V_{CE} = 5.0 V, f = 1.0 kHz

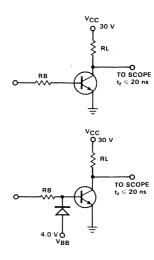
FAIRCHILD • 2N5685 • 2N5686


TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd)









SWITCHING CIRCUIT

NPN SILICON

2N5838 2N5839 2N5840

DESIGNED FOR HIGH VOLTAGE POWER SWITCHING APPLICATIONS

- HIGH SPEED 3.0 A SWITCH
- 3.0 μs t_s @ 3.0 A (2N5838)
- 100 W DISSIPATION AT 25°C CASE
- 3.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT

2N5839

275 V

300 V

6.0 V

3.0 A

5.0 A

1.5 A

2N5840

350 V

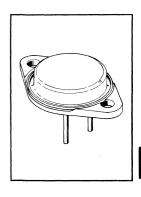
375 V

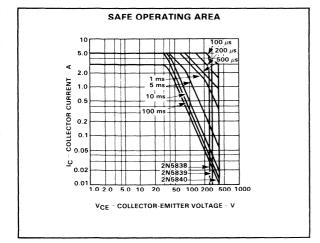
6.0 V

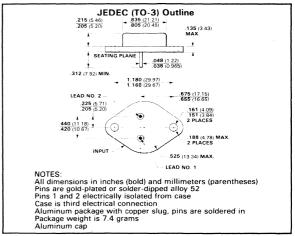
3.0 A

5.0 A

1.5 A

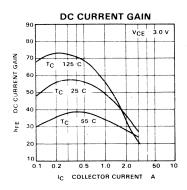

100 W 0.57 W/°C

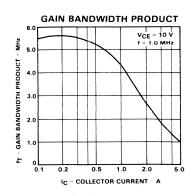

1.75° C/W 230° C

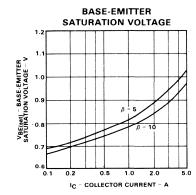

 -65° C to $+200^{\circ}$ C

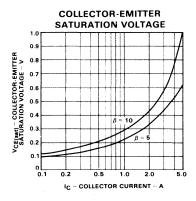
ABSOLUTE MAXIMUM RATINGS (Note 1)

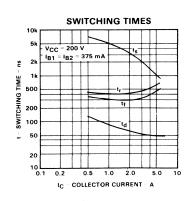
Maximum Vol	tages and Currents	2N5838					
VCEO	Collector to Emitter Voltage 250						
V _{CBO}	Collector to Base Voltage	275 V					
V_{EBO}	Emitter to Base Voltage	6.0 V					
IC.	Continuous Collector Current	3.0 A					
I _C	Peak Collector Current	5.0 A					
IB	Continuous Base Current 1.5						
Maximum Pov	ver Dissipation						
P_{D}	Total Dissipation @ 25°C Case Tempe	rature					
_	Derate Linearly from 25°C						
Maximum Ten	peratures						
T_J , T_{stq}	Storage and Operation Junction Temp	eratures					
Thermal Chara	acteristics						
R_{θ} JC	Thermal Resistance, Junction to Case						
Tp	Maximum Pin Temperature for Solder	ing					
,	Purposes: 1/8" from Case for 10 seco	nds					



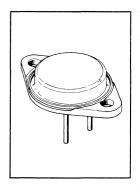


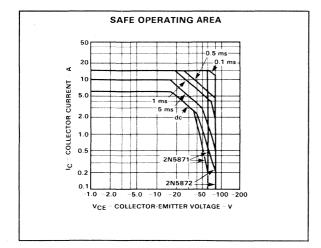

FAIRCHILD • 2N5838 • 2N5839 • 2N5840

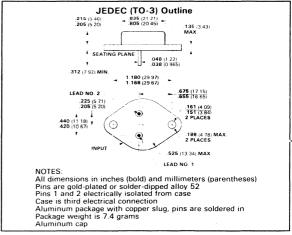

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


SYMBOL	CHARACTERISTIC		5838	2N5839			5840	UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX	ONT	1201 001121110110
FF CHARAC									
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	250		275		350		٧	I _C = 200 mA, I _B = 0
V _{CEX(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	275		300		375		V	I _C = 100 mA, V _{BE(off)} = -1.5 V
CEO	Collector Cutoff Current		2.0		2.0		2.0	mA mA	V _{CE} = 200 V, I _B = 0 V _{CE} = 250 V, I _B = 0
ICEX	Collector Cutoff Current		8.0		2.0 5.0		2.0	mA mA mA mA	V _{CE} = 265 V, V _{BE} = -1.5 V V _{CE} = 290 V, V _{BE} = -1.5 V V _{CE} = 360 V, V _{BE} = -1.5 V V _{CE} = 265 V, V _{BE} = -1.5 V T _C = 100° C V _{CE} = 290 V, V _{BE} = -1.5 V T _C = 100° C V _{CE} = 360 V, V _{BE} = -1.5 V
	5 0 . ((0								T _C = 100°C
¹ EBO	Emitter Cutoff Current		1.0		1.0		1.0	mA	V _{EB} = 6.0 V, I _C = 0
h _{FE}	DC Current Gain (Note 1)	20	40	20 10	50	20 10	50		$I_C = 0.5 \text{ A}, V_{CE} = 5.0 \text{ V}$ $I_C = 2.0 \text{ A}, V_{CE} = 3.0 \text{ V}$ $I_C = 3.0 \text{ A}, V_{CE} = 2.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)	0.0	1.0		1.5		1.5	V V	I _C = 3.0 A, I _B = 375 mA I _C = 2.0 A, I _B = 200 mA
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		2.0		2.0		2.0	V V	I _C = 3.0 A, I _B = 375 mA I _C = 2.0 A, I _B = 200 mA
SECOND BREA	AKDOWN								
^I S/b ,	Second Breakdown Collector Current with base forward biased	2.5		2.5		2.5		А	t = 1.0s (non repetitive) V _{CE} = 40 V
E _{S/b}	Second Breakdown Energy with base reversed biased	0.45		0.45		0.45		mJ	V _{BE} (off) = -4.0 V L = 100 μH, R _B = 50 Ω
YNAMIC CH	ARACTERISTICS								
C _{ob}	Output Capacitance		150		150		150	ρF	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	5.0	·	5.0		5.0			I _C = 200 mA, V _{CE} = 10 V, f = 1.0 MHz
	HARACTERISTICS								
RESISTIVE LO	UAU			1	1			T	Vac = 200 V Ia = 2.0 A
t _r	Rise Time		1.5					μs	$V_{CC} = 200 \text{ V}, I_{C} = 3.0 \text{ A}$ $I_{B1} = 375 \text{ mA}$
t _S	Storage Time		3.0					μs	V _{CC} = 200 V, I _C = 3.0 A
tf	Fall Time		1.5					μs	I _{B1} = I _{B2} = 375 mA
t _r	Rise Time				1.5		1.75	μs	V_{CC} = 200 V, I_{C} = 2.0 A, I_{B1} = 200 mA, I_{p} = 20 μ s, Duty Cycle = 100 Hz
t _s	Storage Time				3.75		3.0	μs	$V_{CC} = 200 \text{ V}, I_{C} = 2.0 \text{ A},$
tf	Fall Time				1.5		1.5	μs	$I_{B1} = I_{B2} = 200 \text{ mA}, t_p = 20 \mu \text{s}$ Duty Cycle = 100 Hz

PNP SILICON


2N5871 2N5872


DESIGNED FOR GENERAL PURPOSE POWER AMPLIFIER AND SWITCHING APPLICATIONS


- 115 W DISSIPATION AT 25°C CASE
- 7.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 4.0 MHz f_T AT 0.25 mAdc COLLECTOR CURRENT
- COMPLEMENT TO 2N5873, 2N5874

ABSOLUTE MAXIMUM RATINGS (Note 1)

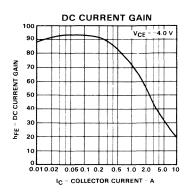
Maximum Volt	ages and Currents	2N5871	2N5872
v_{CEO}	Collector to Emitter Voltage	−60 V	−80 V
V _{CBO}	Collector to Base Voltage	-60 V	-80 V
VEBO	Emitter to Base Voltage	5.0 V	−5.0 V
IC	Continuous Collector Current	7.0 A	7.0 A
1 _C	Peak Collector Current	15 A	15 A
IB	Continuous Base Current	2.0 A	2.0 A
Maximum Pow	er Dissipation		
P_{D}	Total Dissipation @ 25°C Case Temperature		115 W
	Derate Linearly from 25°C		0.66 W/°C
Maximum Tem	peratures		
T _J , T _{stq}	Storage and Operation Junction Temperatures	-65	to +200°C
Thermal Charac	cteristics		
$R_{ heta JC}$	Thermal Resistance, Junction to Case		1.52°C/W

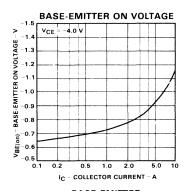
FAIRCHILD • 2N5871 • 2N5872

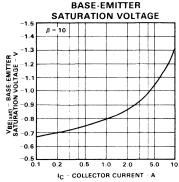
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

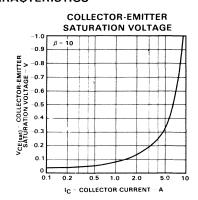
SYMBOL	CHARACTERISTIC	2N5871		2N5872			TECT CONDITIONS	
3 T WIDOL	CHARACTERISTIC	MIN	MAX	·MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARAC	TERISTICS							
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	-60		-80		V	I _C = 100 mA, I _B = 0	
CEO	Collector Cutoff Current		0.5		0.5	mA mA	V _{CE} = -30 V, I _B = 0 V _{CE} = -40 V, I _B = 0	
CEX	Collector Cutoff Current		0.25 2.0		0.25	mA mA mA	VCE = -60 V, VBE = 1.5 V VCE = -80 V, VBE = 1.5 V VCE = -60 V, VBE = 1.5 V TC = 150°C VCE = -80 V, VBE = 1.5 V TC = 150°C	
СВО	Collector Cutoff Current		0.25		0.25	mA mA	V _{CB} = -60 V, I _E = 0 V _{CB} = -80 V, I _E = 0	
¹ EBO	Emitter Cutoff Current		1.0		1.0	mA	V _{EB} = -5.0 V, I _C = 0	
N CHARACT	ERISTICS				 			
hFE	DC Current Gain (Note 1)	35 20 4.0	100	35 20 4.0	100		I _C = 0.5 A, V _{CE} = -4.0 V I _C = 2.5 A, V _{CE} = -4.0 V I _C = 7.0 A, V _{CE} = -4.0 V	
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		-1.0 -2.0		-1.0 -2.0	V	I _C - 4.0 A, I _B - 0.4 A I _C = 7.0 A, I _B = 1.75 A	
VBE(sat)	Base-Emitter Saturation Voltage (Note 1)		-2.5		-2.5	V	I _C = 7.0 A, I _B = 1.75 A	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.5		-1.5	V	I _C = 2.5 A, V _{CE} ≈ -4.0 V	
YNAMIC CH	ARACTERISTICS	***************************************	*	-			· · · · · · · · · · · · · · · · · · ·	
	T		,	7				

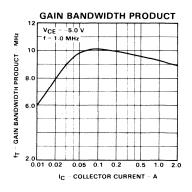
fΤ	Current-Gain-Bandwidth Product	4.0		4.0		MHz	I _C = 0.25 A, V _{CE} = -10 V f = 1.0 MHz
C _{ob}	Output Capacitance		300		200	pF	$V_{CB} = -10 \text{ V}, I_E = 0, f = -1.0 \text{ MHz}$
h _{fe}	Small Signal Current Gain	20		20			I _C = 0.5 A, V _{CE} = -4.0 V, f = 1.0 kHz

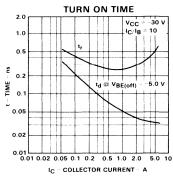

SWITCHING CHARACTERISTICS

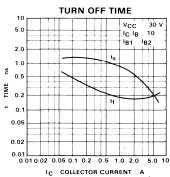

RESISTIVE LOAD


 t _r	Rise Time	0.7	0.7	μs	$V_{CC} = -30 \text{ V}, I_{C} = 2.5 \text{ A}, I_{B1} = 0.25 \text{ A}$ Duty Cycle = 1.0%
t _s	Storage Time	1.0	1.0	μs	$V_{CC} = -30 \text{ V}, I_{C} = 2.5 \text{ A}$
tf	Fall Time	0.8	0.8	μς	I _{B1} = I _{B2} = 0.25 A, Duty Cycle = 1.0%


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


FAIRCHILD • 2N5871 • 2N5872





NPN SILICON

2N5873 2N5874

DESIGNED FOR GENERAL PURPOSE POWER AMPLIFIER AND SWITCHING APPLICATIONS

- 115 W DISSIPATION AT 25°C CASE
- 7 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 4 MHz fT AT 0.25 mAdc COLLECTOR CURRENT
- COMPLEMENT TO 2N5871, 2N5872

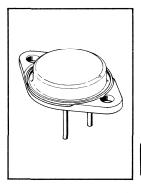
ABSOLUTE MAXIMUM RATINGS (Note 1)

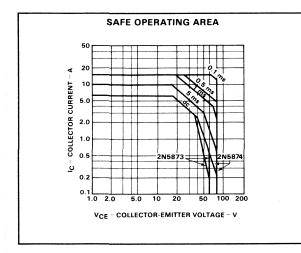
Maximum Vo	oltages and Currents
v_{CEO}	Collector to Emitter Voltage
V _{CBO}	Collector to Base Voltage
V _{EBO}	Emitter to Base Voltage
lc l	Continuous Collector Current
۱c	Peak Collector Current
1 _B	Continuous Base Current
Maximum Po	wer Dissipation
P_{D}	Total Dissipation @ 25°C Case Temperature
J	Derate Linearly from 25°C
Maximum Ta	mnovotuvos

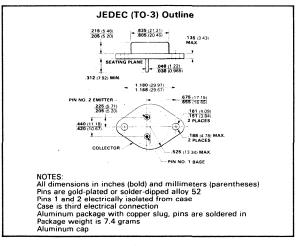
Maximum Temperatures

 $T_{J}, T_{stg} \qquad \text{Storage and Operation Junction Temperatures} \\ \textbf{Thermal Characteristics}$

 $R_{\theta}JC$

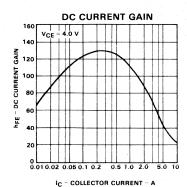

Thermal Resistance, Junction to Case

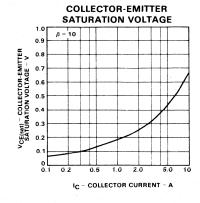

2N5873	2N5874
60 V	80 V
60 V	80 V
5.0 V	5.0 V
7.0 A	7.0 A
15 A	15 A
2.0 A	2.0 A


115 W 0.66 W/°C

-65°C to +200°C

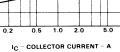
1.52°C/W

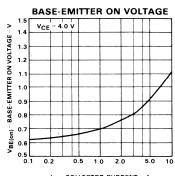


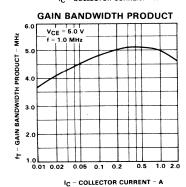

FAIRCHILD • 2N5873 • 2N5874

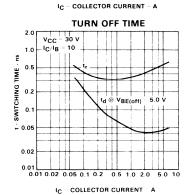
SYMBOL	OLIA DA OTERIOTIC	2N5873		2N5874			
STINBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
FF CHARAC	TERISTICS						
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80		V	I _C = 100 mA, I _B = 0
CEO	Collector Cutoff Current		0.5		0.5	mA mA	V _{CE} = 30 V, I _B = 0 V _{CE} = 40 V, I _B = 0
CEX	Collector Cutoff Current		0.25 2.0		0.25	mA mA mA	V _{CE} = 60 V, V _{BE} = -1.5 V V _{CE} = 80 V, V _{BE} = -1.5 V V _{CE} = 60 V, V _{BE} = -1.5 V, T _C = 150°C
					2.0	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V}$ $T_{C} = 150^{\circ} \text{ C}$
СВО	Collector Cutoff Current		0.25			mA	V _{CB} = 60 V, I _E = 0
		-			0.25	mA	V _{CB} = 80 V, I _E = 0
^I EBO	Emitter Cutoff Current		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0
N CHARACT	ERISTICS						
hFE	DC Current Gain (Note 1)	35 20 4.0	100	35 20 4.0	100		I _C = 0.5 A, V _{CE} = 4.0 V I _C = 2.5 A, V _{CE} = 4.0 V I _C = 7.0 A, V _{CE} = 4.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.0 2.0		1.0 2.0	V	I _C = 4.0 A, I _B = 0.4 A I _C = 7.0 A, I _B = 1.75 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		2.5		2.5	V	I _C = 7.0 A, I _B = 1.75 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.5		1.5	V	I _C = 2.5 A, V _{CE} = 4.0 V
YNAMIC CH	ARACTERISTICS		-		·		
f _T	Current-Gain-Bandwidth Product	4.0		4.0		MHz	I _C = 0.25 A, V _{CE} = 10 V, f = 1.0 MH
C _{ob}	Output Capacitance		300		200	pF.	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	20		20			I _C = 0.5 A, V _{CE} = 4.0 V, f = 1.0 kHz
WITCHING C	HARACTERISTICS						
t _r	Rise Time		0.7		0.7	μς	V _{CC} = 30 V, I _C = 2.5 A, I _{B1} = 0.25 A, Duty Cycle = 1.0%
t _S	Storage Time		1.0		1.0	μs	V _{CC} = 30 V, I _C = 2.5 A,
tf	Fall Time		0.8	0.8		μs	$I_{B1} = I_{B2} = 0.25 \text{ A},$ Duty Cycle = 1.0%

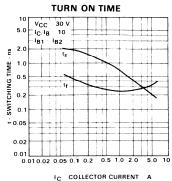
NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


TYPICAL ELECTRICAL CHARACTERISTICS







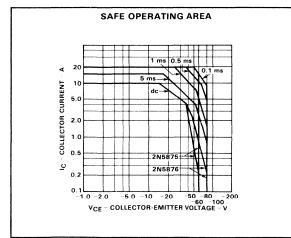

0.6

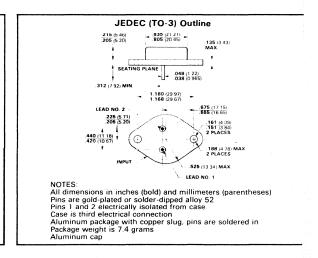
PNP SILICON

2N5875 2N5876

DESIGNED FOR GENERAL PURPOSE POWER AMPLIFIER AND SWITCHING APPLICATIONS

- 150 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 0.5 mAdc I_{CEX} AT RATED VOLTAGE
- 4.0 MHz MINIMUM f_T AT 0.5 A
- COMPLEMENT TO 2N5877, 2N5878


ABSOLUTE MAXIMUM RATINGS (Note 1)

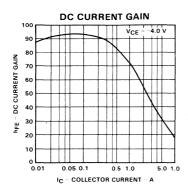

 $R_{\theta,JC}$

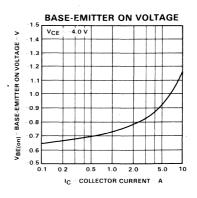
Maximum Volt	ages and Currents
V_{CEO}	Collector to Emitter Voltage
V _{CBO}	Collector to Base Voltage
VEBO	Emitter to Base Voltage
l _C	Continuous Collector Current
I _C	Peak Collector Current
I _B	Continuous Base Current
Maximum Pow	er Dissipation
PD	Total Dissipation @ 25°C Case Temperature
J	Derate Linearly from 25°C
Maximum Tem	peratures
T _J , T _{stq}	Storage and Operation Junction Temperatures
Thermal Charac	eteristics

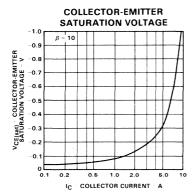
Thermal Resistance, Junction to Case

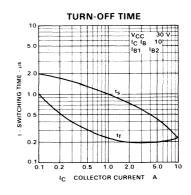
	2N5876	2N5875
	-80 V	−60 V
	−80 V	−60 V
	−5.0 V	-5.0 V
	10 A	10 A
[\mathred{m}\]	20 A	20 A
	4.0 A	4.0 A
	150 W	
l U	0.88 W/°C	
U	to +200°C	−65°C

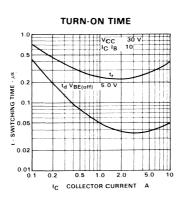
1.17°C/W


FAIRCHILD • 2N5875 • 2N5876


ELECTRICAL	CHARACTERISTICS	125°C (Case	Temperature	unless	otherwise noted)


0)/44001	CHARACTERISTIC	2N5875			876			
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARAC	TERISTICS				1,			
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	-60		-80		V	I _C = 200 mA, I _B = 0	
ICEO	Collector Cutoff Current		1.0		1.0	mA mA	V _{CE} = -30 V, I _B = 0 V _{CE} = -40 V, I _B = 0	
	0.11		0.5		0.5	mA mA	V _{CE} = -60 V, V _{BE} = 1.5 V V _{CE} = -80 V, V _{BE} = 1.5 V V _{CE} = -60 V, V _{BE} = 1.5 V,	
CEX	Collector Cutoff Current		5.0		5.0	mA mA	$T_C = 150^{\circ} C$ $V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_C = 150^{\circ} C$	
Ісво	Collector Cutoff Current		0.5		0.5	mA mA	V _{CB} = -60 V, I _E = 0 V _{CB} = -80 V, I _E = 0	
IEBO	Emitter Cutoff Current		1.0		1.0	mA	V _{EB} = -5.0 V, I _C = 0	
N CHARACT	ERISTICS		4					
hFE	DC Current Gain (Note 1)	35 20 4.0	100	35 20 4.0	100		I _C = 1.0 A, V _{CE} = -4.0 V I _C = 4.0 A, V _{CE} = -4.0 V I _C = 10 A, V _{CE} = -4.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-1.0 -3.0		-1.0 -3.0	V V	I _C = 5.0 A, I _B = 0.5 A I _C = 10 A, I _B = 2.5 A	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-2.5			V	I _C = 10 A, I _B = 2.5 A	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.5		-1.5	V	I _C = 4.0 A, V _{CE} = -4.0 V	
YNAMIC CH	ARACTERISTICS							
fT	Current-Gain-Bandwidth Product	4.0		4.0		MHz	$I_C = 0.5 \text{ A}, \ V_{CE} = -10 \text{ V},$ f = 1.0 MHz	
c_{ob}	Output Capacitance		500		300	pF	$V_{CB} = -10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$	
h _{fe}	Small Signal Current Gain	20		20			I _C = 1.0 A, V _{CE} = -4.0 V, f = 1.0 kHz	
WITCHING CH ESISTIVE LO	IARACTERISTICS AD							
tr	Rise Time		0.7		0.7	μs	$V_{CC} = -30 \text{ V}, I_C = 4.0 \text{ A},$ $I_{B1} = 0.4 \text{ A},$	
t _S	Storage Time		1.0		1.0	μs	V _{CC} = -30 V, I _C = 4.0 A,	
tf	Fall Time		0.8	-	0.8	μs	IB1 = IB2 = 0.4 A, Duty Cycle = 1.0%	


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


FAIRCHILD • 2N5875 • 2N5876

NPN SILICON

2N5877 2N5878

DESIGNED FOR GENERAL PURPOSE AMPLIFIER AND LOW SPEED SWITCHING APPLICATIONS

- 150 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 0.5 mAdc ICEX AT RATED VOLTAGE
- 4.0 MHz MINIMUM f_T at 0.5 A
- **COMPLEMENT TO 2N5875, 2N5876**

ABSOLUTE MAXIMUM RATINGS (Note 1) Maximum Voltages

viaximum	Voltages and Currents
VCEO	Collector to Emitter Voltage
V _{СВО}	Collector to Base Voltage
VEBO	Emitter to Base Voltage
l _C	Continuous Collector Current
١c	Peak Collector Current
I _B	Continuous Base Current
Maximum	Power Dissipation

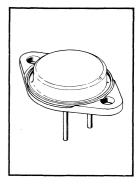
PD Total Dissipation @ 25°C Case Temperature

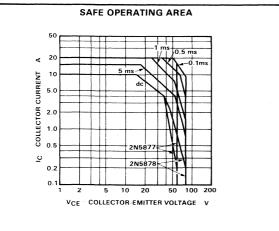
Derate Linearly from 25°C

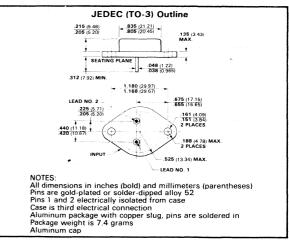
Maximum Temperatures

 T_{J} , T_{stg} Storage and Operation Junction Temperatures

Thermal Characteristics


 $R_{\theta}JC$ Thermal Resistance, Junction to Case

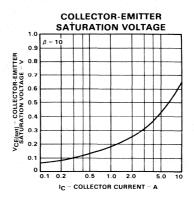

2N5877	2N5878
60 V	80 V
60 V	80 V
5.0 V	5.0 V
10 A	10 A
20 A	20 A
4.0 A	4.0 A
	150 W

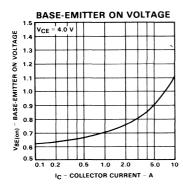

0.88 W/°C

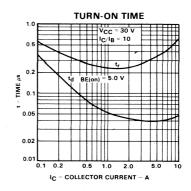
-65°C to +200°C

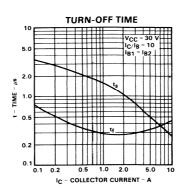
1.17°C/W






FAIRCHILD • 2N5877 • 2N5878


		2N5	5877	2N5	5878	UNIT	TECT COMPLETIONS
SYMBOL	CHARACTERISTIC	MIN	MIN MAX M		MIN MAX		TEST CONDITIONS
FF CHARACTE	ERISTICS		-				
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80		V	I _C = 200 mA, I _B = 0
I _{CEO}	Collector Cutoff Current		1.0		1.0	mA mA	V _{CE} = 30 V, I _B = 0 V _{CE} = 40 V, I _B = 0
¹ CEX	Collector Cutoff Current		0.5 5.0		0.5 5.0	mA mA mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V}$ $V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V}$ $V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$ $V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V},$
I _{CBO}	Collector Cutoff Current		0.5		0.5	mA	$T_C = 150^{\circ}C$ $V_{CB} = 60 \text{ V, } I_E = 0$
I _{EBO}	Emitter Cutoff Current		1.0		1.0	mA mA	V _{CB} = 80 V, I _E = 0 V _{EB} = 5.0 V, I _C = 0
N CHARACTER	2017219			L	<u> </u>		
h _{FE}	DC Current Gain (Note 1)	35 20 4.0	100	35 20 4.0	100		I _C = 1.0 A, V _{CE} = 4.0 V I _C = 4.0 A, V _{CE} = 4.0 V I _C = 10 A, V _{CE} = 4.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.0 3.0		1.0 3.0	· V	$I_C = 5.0 \text{ A}, I_B = 0.5 \text{ A}$ $I_C = 10 \text{ A}, I_B = 2.5 \text{ A}$
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		2.5			٧	I _C = 10 A, I _B = 2.5 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.5		1.5	٧ ,	$I_C = 4.0 \text{ A, V}_{CE} = 4.0 \text{ V}$
YNAMIC CHAF	RACTERISTICS						
f _T	Current Gain Bandwidth Product	4.0		4.0		MHz	I _C = 0.5 A, V _{CE} = 10 V, f = 1.0 MHz
C _{ob}	Output Capacitance		500		300	pΕ	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	20		20			I_{C} = 1.0 A, V_{CE} = 4.0 V, f = 1.0 kHz
WITCHING CH	IARACTERISTICS						
t _r	Rise Time		0.7		0.7	μs	V _{CC} = 30 V, I _C = 4.0 A, I _{B1} = 0.4 A
t _s	Storage Time		1.0		1.0	μs	V _{CC} = 30 V, I _C = 4.0 A, I _{B1} = I _{B2} = 0.4 A, Duty Cycle 1.0%
t _f ,	Fall Time		0.8		0.8	μs	V _{CC} = 30 V, I _C = 4.0 A I _{B1} = I _{B2} = 0.4 A. Duty Cycle 1.0%


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

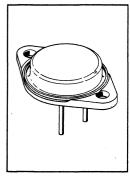
PNP SILICON

2N5879 2N5880

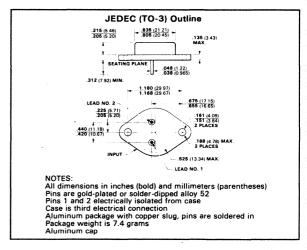
HIGH POWER GENERAL PURPOSE POWER-AMPLIFIER AND SWITCHING APPLICATIONS

- 160 W DISSIPATION AT 25°C CASE
- 15 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT 2N5881, 2N5882

ABSOLUTE MAXIMUM RATINGS (Note 1)


Maximum V	oltages and Currents
v_{CEO}	Collector to Emitter Voltage
· V _{CBO}	Collector to Base Voltage
VEBO	Emitter to Base Voltage
lc .	Continuous Collector Current
١c	Peak Collector Current
I _B	Continuous Base Current
Maximum Po	ower Dissipation
PD	Total Dissipation @ 25°C Case Temperature
	Derate Linearly from 25°C
Maximum T	emperatures
T_J, T_stg	Storage and Operation Junction Temperature
Thermal Cha	aracteristics
$R_{ heta}JC$	Thermal Resistance, Junction to Case

-60 V	-80 V					
-60 V	-80 V					
-5.0 V	-5.0 V					
15 A	15 A					
30 A	30 A					
5.0 A	5.0 A					
160 W 0.92 W/°C						
-65°C to +200°C						


1.09°C/W

2N5880

2N5879

	100		T	1.0 m	5	Т			
	50				5 m	+	ms		
	<u> </u>	++-	++	*	₩	*	ms		
∢ .			10		\star	+	-		
5	10			25.5	7	Y	\sqcup		
COLLECTOR CURRENT	.		de	N	J	Y			
<u> </u>	5.0				N	\pm	\vdash		
5				-+	₩	1			
5		+++-	++	-+1	\mathbb{H}	+			
ຼ					M				
. 3	1.0				V	П			
ខ	0.5		2N58	79 4	1	₩	_		
္ခ်				-+-	11	V			
_	-	+++-	żi	N588	∘=	-			
	0.1				Ш				
	-1.0	-5.0 -1	10	-	50	-10	00 -20	0	

FAIRCHILD • 2N5879 • 2N5880

CHARACTERISTICS		

SYMBOL	OLIA DA OTEDISTIO	2N5	879	2N5	880	UNIT	TEST CONDITIONS	
STIMBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	LEST CONDITIONS	
F CHARAC	TERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-60		-80		V	I _C = 200 mA, I _B = 0	
, ,	Calleate Co. et C		1.0			mA	V _{CE} = -30 V, I _B = 0	
CEO	Collector Cutoff Current				1.0	mA	V _{CE} = -40 V, I _B = 0	
			0.5			mA	V _{CE} = -60 V, V _{BE} = 1.5 V	
					0.5	mA	V _{CE} = -80 V, V _{BE} = 1.5 V	
ICEX	Collector Cutoff Current		5.0			mA	$V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
					5.0	mA	$V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
	0-11		0.5			mA	V _{CB} = -60 V, I _E = 0	
СВО	Collector Cutoff Current				0.5	mA	V _{CB} = -80 V, I _E = 0	
I _{EBO}	Emitter Cutoff Current		1.0		1.0	mA	V _{EB} = -5.0 V, I _C = 0	
CHARACT	ERISTICS							
•		4.0		4.0			I _C = 15 A, V _{CE} = -4.0 V	
hFE	DC Current Gain (Note 1)	20	100	20	100		I _C = 6.0 A, V _{CE} = -4.0 V	
		35		35			$I_C = 2.0 \text{ A}, V_{CE} = -4.0 \text{ V}$	
V	Collector-Emitter		-1.0		-1.0	V	I _C = 7.0 A, I _B = 0.7 A	
V _{CE(sat)}	Saturation Voltage (Note 1)		-4.0		-4.0	V .	I _C = 15 A, I _B = 3.75 A	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-2.5		-2.5	V	I _C = 15 A, I _B = 3.75 A	

DYNAMIC CHARACTERISTICS

Voltage (Note 1) Base-Emitter "On"

Voltage (Note 1)

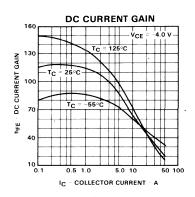
fT	Current-Gain- Bandwidth Product	4.0		4.0		MHz	$I_C = 1.0 \text{ A, V}_{CE} = -1.0 \text{ V,}$ f = 1.0 MHz
C _{ob}	Output Capacitance		600		600	pF	$V_{CB} = -10 \text{ V, I}_{E} = 0,$ f = 0.1 MHz
h _{fe}	Small Signal Current Gain	20		20			I _C = 2.0 A, V _{CE} = -4.0 V, f = 1.0 kHz

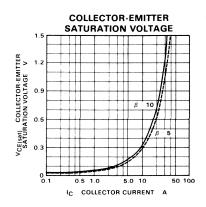
-1.5

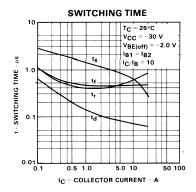
-1.5

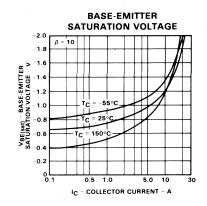
 $I_C = 6.0 \text{ A}, V_{CE} = -4.0 \text{ V}$

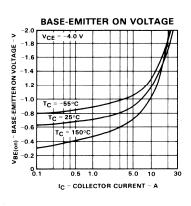
SWITCHING CHARACTERISTICS


RESISTIVE LOAD


V_{BE(on)}

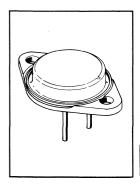

TIEDIO TTVE EX	<u> </u>				
t _r	Rise Time	0.7	0.7	μs	$V_{CC} = -30 \text{ V}, I_C = 6.0 \text{ A},$ $I_{B1} = 0.6 \text{ A}, t_p = 25 \mu s,$ Duty Cycle 1%
t _s	Storage Time	1.0	1.0	μs	$V_{CC} = -30 \text{ V, } I_C = 6.0 \text{ A,}$ $I_{B1} = I_{B2} = 0.6 \text{ A, } t_p = 25 \mu\text{s,}$ Duty Cycle 1%
tf	Fall Time	0.8	0.8	μs	

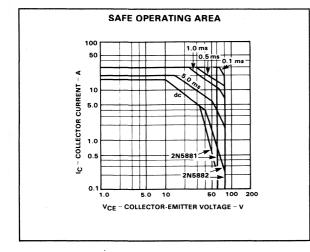

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

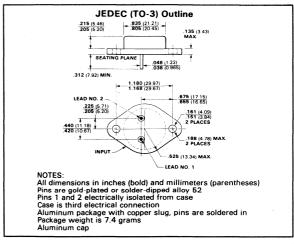

FAIRCHILD • 2N5879 • 2N5880

NPN SILICON

2N5881 2N5882

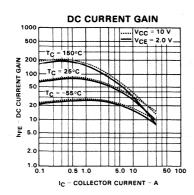

HIGH POWER GENERAL PURPOSE POWER-AMPLIFIER AND SWITCHING APPLICATIONS

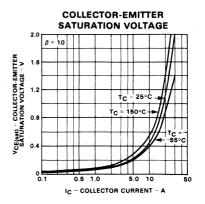

- 160 W DISSIPATION AT 25°C CASE
- 15 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT 2N5879, 2N5880

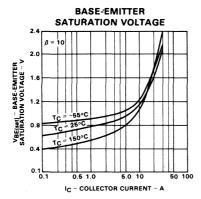

ABSOLUTE MAXIMUM RATINGS (Note 1)

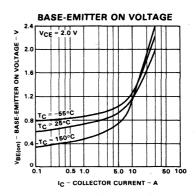
Maximum V	oltages and Currents	
v_{CEO}	Collector to Emitter Voltage	
VCBO	Collector to Base Voltage	
VEBO	Emitter to Base Voltage	
l _C	Continuous Collector Current	
١ċ	Peak Collector Current	
I _B	Continuous Base Current	
Maximum P	ower Dissipation	
P_{D}	Total Dissipation @ 25°C Case Temperature	
	Derate Linearly from 25°C	
Maximum T	emperatures	
T_{J} , T_{stq}	Storage and Operation Junction Temperatures	
Thermal Ch		
$R_{ heta}JC$	Thermal Resistance, Junction to Case	

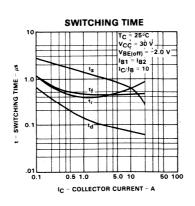
2N5881	2N5882
60 V	80 V
60 V	80 V
5.0 V	5.0 V
15 A	15 A
30 A	30 A
5.0 A	5.0 A
	160 W 0.92 W/°C
-65°C	to +200°C
	1.09°C/W




FAIRCHILD • 2N5881 • 2N5882

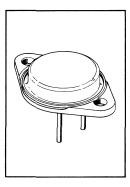

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


SYMBOL	CHARACTERISTIC	2N5	2N5881		2N5882		TEST CONDITIONS
		MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARAC							
V _{CEO(sus)}	Collector Emitter Sustaining Voltage (Note 1)	60		80		V	I _C = 200 mA, I _B = 0
CEO	Collector Cutoff Current		1.0		1.0	mA mA	V _{CE} = 30 V, I _B = 0 V _{CE} = 40 V, I _B = 0
			0.5		0.5	mA mA	V _{CE} = 60 V, V _{BE} = -1.5 V V _{CE} = 80 V, V _{BE} = -1.5 V
CEX	Collector Cutoff Current		5.0		5.0	mA mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$ $V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$
СВО	Collector Cutoff Current		0.5		0.5	mA mA	V _{CB} = 60 V, I _E = 0 V _{CB} = 80 V, I _E = 0
I _{EBO}	Emitter Cutoff Current		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0
N CHARACT	ERISTICS			<u> </u>	<u></u>		
h _{FE}	DC Current Gain (Note 1)	4.0 20 35	100	4.0 20 35	100		$I_C = 15 \text{ A}, V_{CE} = 4.0 \text{ V}$ $I_C = 6.0 \text{ A}, V_{CE} = 4.0 \text{ V}$ $I_C = 2.0 \text{ A}, V_{CE} = 4.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.0 4.0		1.0	v v	I _C = 7.0 A, I _B = 0.7 A I _C = 15 A, I _B = 3.75 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		2.5		2.5	v	I _C = 15 A, I _B = 3.75 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.5		1.5	v	I _C = 60 A, V _{CE} = 4.0 V
YNAMIC CHA	ARACTERISTICS		<u> </u>			L	
f _T	Current-Gain- Bandwidth Product	4.0		4.0		MHz	I _C = 1.0 A, V _{CE} = 10 V, f = 1.0 MHz
C _{ob}	Output Capacitance		400		400	ρF	V _{CB} = 10 V, I _E = 0 f = 0.1 MHz
h _{fe}	Small Signal Current Gain	20		20			I _C = 2.0 A, V _{CE} = 4.0 V, f = 1.0 kHz
WITCHING C	HARACTERISTICS						
t _r	Rise Time		0.7	·	0.7	μs	$V_{CC} = 30 \text{ V, } I_{C} = 6.0 \text{ A,}$ $I_{B1} = 0.6 \text{ A, } t_{p} = 25 \mu \text{s,}$ Duty Cycle 1%
t _s	Storage Time		1.0		1.0	μς	$V_{CC} = 30 \text{ V, } I_{C} = 6.0 \text{ A,}$ $I_{B1} = I_{B2} = 0.6 \text{ A, } t_{p} = 25 \mu\text{s,}$ Duty Cycle 1%
t _f	Fall Time		0.8		0.8	μs	

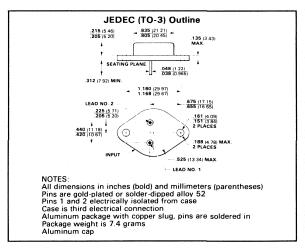

FAIRCHILD • 2N5881 • 2N5882

PNP SILICON

2N5883 2N5884


DESIGNED FOR GENERAL PURPOSE POWER AMPLIFIER AND SWITCHING APPLICATIONS

- 200 W DISSIPATION AT 25°C CASE
- 25 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS 2N5885, 2N5886


ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum	Voltages and Currents
v_{CEO}	Collector to Emitter Voltage
VCBO	Collector to Base Voltage
V_{EBO}	Emitter to Base Voltage
lc	Continuous Collector Current
lc	Peak Collector Current
ΙB	Continuous Base Current
Maximum	Power Dissipation
P_{D}	Total Dissipation @ 25°C Case Temperature
_	Derate Linearly from 25°C
Maximum	Temperatures
T_J , T_{stg}	Storage and Operation Junction Temperatures
Thermal C	haracteristics
$R_{ heta}JC$	Thermal Resistance, Junction to Case

2N5883	2N5884
-60 V	-80 V
-60 V	-80 V
-5.0 V	-5.0 V
25 A	25 A
50 A	50 A
7.5 A	7.5 A
	200 W 1.14 W/°C
-65°C	to +200°C
	0.86°C/W

	SAFE OPERATING AREA
	100
4	50
RENT	50 50 0 10 10 dd
COLLECTOR CURRENT	5.0
LECTO	1.0
1	0.5 2N5883
ပ္	2N5884
	0.1
	V _{CE} - COLLECTOR-EMITTER VOLTAGE - V

FAIRCHILD • 2N5883 • 2N5884

2N5884

UNIT | TEST CONDITIONS

 $V_{CC} = -30 \text{ V, I}_{C} = 10 \text{ A,}$ $I_{B1} = I_{B2} = 1.0 \text{ A, t}_{p} = 10 \text{ to } 100 \text{ }\mu\text{s,}$ Duty Cycle 2%

2N5883

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

CHARACTERISTIC

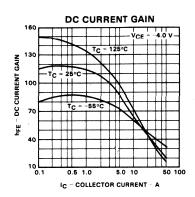
SYMBOL

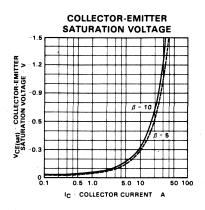
01111101	CHARACTERIOTIC	MIN	MAX	MIN	MAX	Civii	TEST CONDITIONS
F CHARAC	TERISTICS						
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-60		-80		V	I _C = 200 mA, I _B = 0
CEO	Collector Cutoff Current	e e e e e e e e e e e e e e e e e e e	2.0		2.0	mA mA	V _{CE} = -30 V, I _B = 0 V _{CE} = -40 V, I _B = 0
^I CEX	Collector Cutoff Current		1.0		1.0	mA mA mA	V _{CE} = -60 V, V _{BE} = 1.5 V V _{CE} = -80 V, V _{BE} = 1.5 V V _{CE} = -60 V, V _{BE} = 1.5 V, T _C = 150°C V _{CE} = -80 V, V _{BE} = 1.5 V, T _C = 150°C
СВО	Collector Cutoff Current		1.0		1.0	mA mA	V _{CB} = -60 V, I _E = 0 V _{CB} = -80 V, I _E = 0
I _{EBO}	Emitter Cutoff Current		1.0	†	1.0	mA	V _{EB} = -5.0 V, I _C = 0
N CHARACT	ERISTICS				·		
h _{FE}	DC Current Gain (Note 1)	4.0 20 35	100	4.0 20 35	100		$I_C = 25 \text{ A}, V_{CE} = -4.0 \text{ V}$ $I_C = 10 \text{ A}, V_{CE} = -4.0 \text{ V}$ $I_C = 3.0 \text{ A}, V_{CE} = -4.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-1.0 -4.0		-1.0 -4.0	v v	I _C = 15 A, I _B = 1.5 A I _C = 25 A, I _B = 6.25 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-2.5		-2.5	V	I _C = 25 A, I _B = 6.25 A
V _{BE(on)}	Base-Emitter, "On" Voltage (Note 1)		-1.5		-1.5	v	I _C = 10 A, V _{CE} = -4.0 V
YNAMIC CH	ARACTERISTICS						
C _{ob}	Output Capacitance		1000		1000	pF	V _{CB} = -10 V, I _E = 0 f = 1.0 MHz
^h fe	Magnitude of Common Emitter Small Signal Current Gain	4.0		4.0			I _C = 1.0 A, V _{CE} = -10 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	20		20		·	I _C = 3.0 A, V _{CE} = -4.0 V, f = 1.0 kHz
	HARACTERISTICS						
t _r	Rise Time	-	0.7		0.7	μs	$V_{CC} = -30 \text{ V}, I_{C} = 10 \text{ A},$ $I_{B1} = 1.0 \text{ A}, t_{p} = 10 \text{ to } 100 \mu\text{s},$ Duty Cycle 2%
t _s	Storage Time		1.0		1.0	μs	Voc = -30 V lo = 10 A

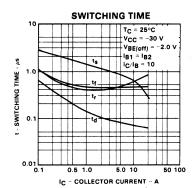
NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

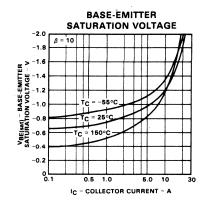
Fall Time

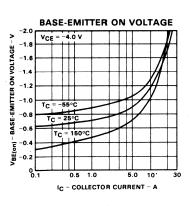
 t_{f}


0.8


8.0


μs


FAIRCHILD • 2N5883 • 2N5884

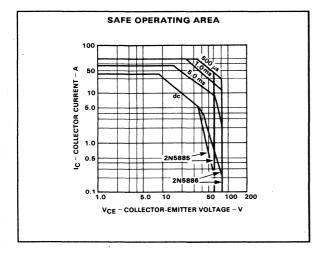

TYPICAL ELECTRICAL CHARACTERISTICS

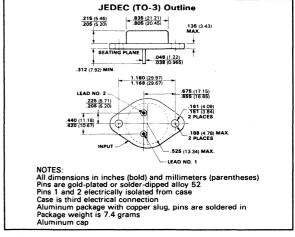
POWER TRANSISTOR

NPN SILICON

2N5885 2N5886

DESIGNED FOR GENERAL PURPOSE POWER AMPLIFIER AND SWITCHING APPLICATIONS

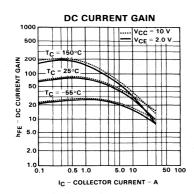

- 200 W DISSIPATION AT 25°C CASE
- 25 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS 2N5883, 2N5884

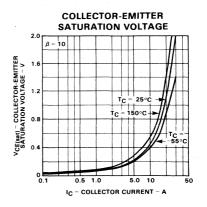

ABSOLUTE MAXIMUM RATINGS (Note 1)

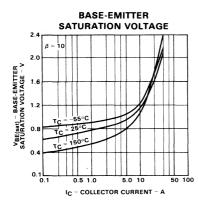
Maximum	Voltages and Currents
VCEO	Collector to Emitter Voltage
VCBO	Collector to Base Voltage
VEBO	Emitter to Base Voltage
Ic	Continuous Collector Current
١c	Peak Collector Current
Ιg	Continuous Base Current
Maximum	Power Dissipation
P_{D}	Total Dissipation @ 25°C Case Temperature
<u> </u>	Derate Linearly from 25°C
Maximum	Temperatures
T_J, T_{stg}	Storage and Operation Junction Temperatures
	haracteristics
$R_{ heta}JC$	Thermal Resistance, Junction to Case

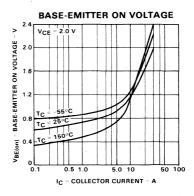
2N5885	2N5886
60 V	80 V
60 V	80 V
5.0 V	5.0 V
25 A	25 A
50 A	50 A
7.5 A	7.5 A
	200 W 1.14 W/°C

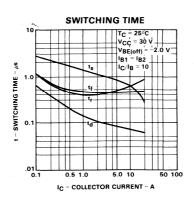
FAIRCHILD • 2N5885 • 2N5886


ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


SYMBOL	CHARACTERISTIC	2N5885		2N5886		LINUT	TEST CONDITIONS	
STIMBOL		MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARAC	TERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80		V	I _C = 200 mA, I _B = 0	
I _{CEO}	Collector Cutoff Current		2.0		2.0	mA mA	V _{CE} = 30 V, I _B = 0 V _{CF} = 40 V, I _B = 0	
CEX	Collector Cutoff Current		1.0		1.0	mA mA mA	V _{CE} = 60 V, V _{BE} = -1.5 V V _{CE} = 80 V, V _{BE} = -1.5 V V _{CE} = 60 V, V _{BE} = -1.5 V, T _C = 150° C	
	en e				10	mA	V _{CE} = 80 V, V _{BE} = -1.5 V, T _C = 150°C	
СВО	Collector Cutoff Current		1.0		1.0	mA mA	V _{CB} = 60 V, I _E = 0 V _{CB} = 80 V, I _E = 0	
I _{EBO}	Emitter Cutoff Current		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0	
N CHARACT	ERISTICS		•					
h _{FE}	DC Current Gain (Note 1)	4.0 20 35	100	4.0 20 35	100		I _C = 25 A, V _{CE} = 4.0 V I _C = 10 A, V _{CE} = 4.0 V I _C = 3.0 A, V _{CE} = 4.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.0 4.0		1.0 4.0	V	I _C = 15 A, I _B = 1.5 A I _C = 25 A, I _B = 6.25 A	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		2.5		2.5	v	I _C = 25 A, I _B = 6.25 A	
YNAMIC CH	ARACTERISTICS							
f _T	Current-Gain- Bandwidth Product	4.0		4.0		MHz	I _C = 1.0 A, V _{CE} = 10 V, f = 1.0 MHz	
C _{ob}	Output Capacitance		500		500	pF	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz	
h _{fe}	Small Signal Current Gain	20		20			I _C = 3.0 A, V _{CE} = 4.0 V, f = 1.0 kHz	


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


FAIRCHILD • 2N5885 • 2N5886


TYPICAL ELECTRICAL CHARACTERISTICS

POWER TRANSISTOR

PNP SILICON

2N6029 2N6030 2N6031

DESIGNED FOR HIGH POWER AUDIO AND SWITCHING REGULATORS

- 200 W DISSIPATION AT 25°C CASE
- 16 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 25 TO 100 h_{FE} AT 8 A, -2.0 V 2N6029

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum \	oltages and Currents
VCEO	Collector to Emitter Voltage
VCBO	Collector to Base Voltage
VEBO	Emitter to Base Voltage
lc lc	Continuous Collector Current
ا ا	Continuous Base Current

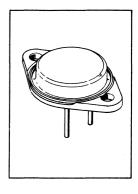
Maximum Power Dissipation

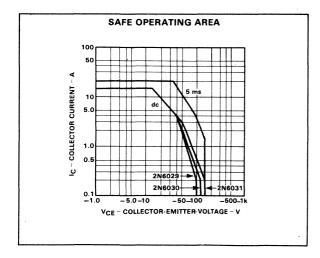
P_D Total Dissipation @ 25°C Case Temperature Derate Linearly from 25°C

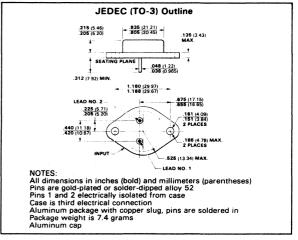
Maximum Temperatures

 $\mathsf{T}_{\mathsf{J}}, \mathsf{T}_{\mathsf{stg}}$ Storage and Operation Junction Temperatures

Thermal Characteristics


 $R_{ heta JC}$ Thermal Resistance, Junction to Case


2N6029	2N6030	2N6031
- 100 V	-120 V	- 140 V
-100 V	-120 V	- 140 V
-7.0 V	-7.0 V	-7.0 V
16 A	16 A	16 A
5.0 A	5.0 A	5.0 A


200 W 1.14 W/°C

-65°C to +200°C

0.88°C/W

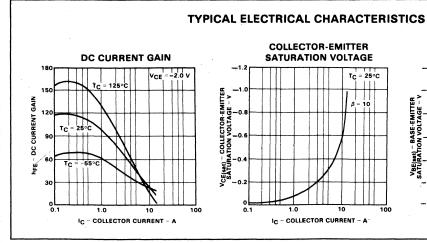
FAIRCHILD • 2N6029 • 2N6030 • 2N6031

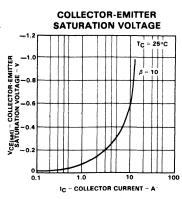
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

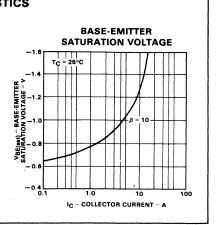
SYMBOL	CHARACTERISTIC	2N6029		2N6030		2N6031				
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS	

	CH					

V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-100		-120		-140		٧	I _C = 200 mA, I _B = 0
			2.0					mA	V _{CE} = -50 V, I _B = 0
CEO	Collector Cutoff Current				2.0			mA	V _{CE} = -60 V, I _B = 0
							2.0	mA	V _{CE} = -70 V, I _B = 0
			2.0					mA	V _{CE} = -100 V, V _{BE} = 1.5 V
					2.0			mA	V _{CE} = -120 V, V _{BE} = 1.5 V
		1					2.0	mA	V _{CE} = -140 V, V _{BE} = 1.5 V
CEX	Collector Cutoff Current		7.0					mA	$V_{CE} = -100 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$
					7.0			mA	V _{CE} = -120 V, V _{BE} = 1.5 V, T _C = 150°C
							7.0	mA	$V_{CE} = -140 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$
			2.0					mA	V _{CB} = -100 V, I _E = 0
СВО	Collector Cutoff Current			1	2.0	1		mA	V _{CB} = -120 V, I _E = 0
							2.0	mA	V _{CB} = -140 V, I _E = 0
^I EBO	Emitter Cutoff Current		5.0		5.0		5.0	mA	V _{EB} = -7.0 V, I _C = 0


ON CHARACTERISTICS


hFE	DC Current Gain (Note 1)	25 4.0	100	20 4.0	80	15 4.0	60		I _C = 8.0 A, V _{CE} = -2.0 V I _C = 16.0 A, V _{CE} = -2.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-1.0 -2.0		-1.0 -2.0		-1.0 -2.0	V .	I _C = 10 A, I _B = 1.0 A I _C = 16 A, I _B = 4.0 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-1.8		-1.8		-1.8	٧	I _C = 10 A, I _B = 1.0 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.5		-1.5		-1.5	٧	I _C = 8.0 A, V _{CE} = -2.0 V


DYNAMIC CHARACTERISTICS

fT	Current-Gain-Bandwidth Product	1.0		1.0		1.0		MHz	I _C = 1.0 A, V _{CE} = -20 V, f = 0.5 MHz
C _{ob}	Output Capacitance		1000		1000		1000	pΕ	V _{CB} = -10 V, I _E = 0, f = 0.1 MHz

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

POWER DARLINGTON

PNP SILICON

2N6050 2N6051 2N6052

DESIGNED FOR GENERAL PURPOSE AMPLIFIER AND LOW SPEED SWITCHING APPLICATIONS

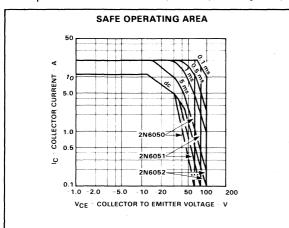
- 150 W DISSIPATION AT 25°C CASE
- 12 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- hFF TYPICAL OF 2000 AT 3.0 A

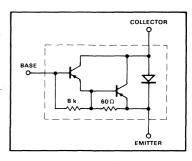
ABSOLUTE MAXIMUM RATINGS Ma

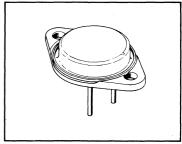
aximum	Voltages and Currents	2N6050	2N6051	2N6052
VCE	Collector to Emitter Voltage	-60 V	-80 V	-100 V
VCB	Collector to Base Voltage	−60 V	-80 V	-100 V
VEB	Emitter to Base Voltage	-5.0 V	-5.0 V	-5.0 V
lc	Continuous Collector Current	12 A	12 A	12 A
۱ _B	Continuous Base Current	0.2 A	0.2 A	0.2 A

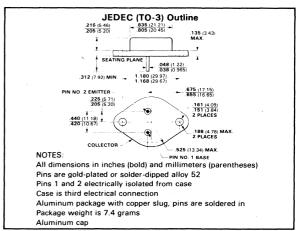
Total Dissipation @ 25°C Case Temperature P_D

Derate Linearly from 25°C


Maximum Temperatures


Storage and Operation Junction Temperatures T_J, T_{sta}


Thermal Characteristics


 $R_{\theta}JC$ ΤĎ

Thermal Resistance, Junction to Case Maximum Pin Temperature (Soldering, 10 s)

150 W

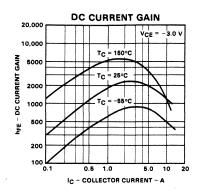
0.857 W/°C

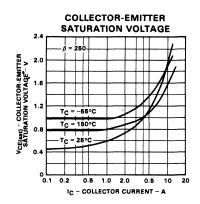
1.17 °C/W

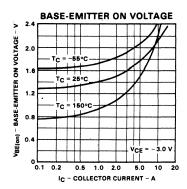
235°C

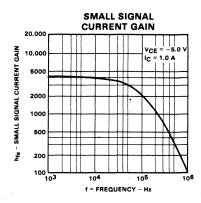
-65°C to +200°C

FAIRCHILD • 2N6050 • 2N6051 • 2N6052


ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted) 2N6050 2N6051 2N6052 SYMBOL UNITS **PARAMETER TEST CONDITIONS** MIN MAX MIN MAX MIN MAX OFF CHARACTERISTICS Collector-Emitter Sustaining -100 ∀_{CEO(sus)} -60 -80 ٧ $I_C = 100 \text{ mA}, I_B = 0$ Voltage (Note 1) 1.0 $V_{CE} = -30 \text{ V, } I_B = 0$ mΑ Collector Cutoff Current 1.0 mΑ $V_{CE} = -40 \text{ V, } I_B = 0$ CEO 1.0 mΑ $V_{CE} = -50 \text{ V. } I_B = 0$ **Emitter Cutoff Current** 2.0 2.0 2.0 $V_{EB} = -5.0 \text{ V}, I_{C} = 0$ **IEBO** mΑ $V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V}$ 0.5 mΑ 0.5 $V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V}$ mA 0.5 mΑ $V_{CE} = -100 \text{ V}, V_{BE} = 1.5 \text{ V}$ Collector Cutoff Current 5.0 $V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V},$ mA CEX T_C = 150°C $V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V}, T_{C} = 150 ^{\circ}\text{C}$ 5.0 mΑ $V_{CE} = -100 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150 ^{\circ}\text{C}$ 5.0 mΑ ON CHARACTERISTICS


h _{FE}	DC Current Gain (Note 1)	750 100	18 k	750 100	18 k	750 100	18 k		$I_C = 6.0 \text{ A}, V_{CE} = -3.0 \text{ V}$ $I_C = 12 \text{ A}, V_{CE} = -3.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-2.0 -3.0		-2.0 -3.0		-2.0 -3.0	V V	I _C = 6.0 A, I _B = 24 mA I _C = 12 A, I _B = 120 mA
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-4.0		-4.0		-4.0	v	I _C = 12 A, I _B = 120 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-2.8		-2.8		-2.8	٧	$I_C = 6.0 \text{ A}, V_{CE} = -3.0 \text{ V}$
C _{ob}	Output Capacitance		500		500		500	pF	V _{CB} = -10 V _H _E = 0, f = 0.1 MHz
h _{fe}	Magnitude of Common Emitter Small Signal Short Circuit Forward Current Transfer Ratio	4.0		4.0	-	4.0			I _C = 5.0 A, V _{CE} = -3.0 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	300		300		300			$I_C = 5.0 \text{ A, V}_{CE} = -3.0 \text{ V,}$ f = 1.0 kHz


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


FAIRCHILD • 2N6050 • 2N6051 • 2N6052

TYPICAL ELECTRICAL CHARACTERISTICS

POWER DARLINGTON

PNP SILICON

2N6053 2N6054

DESIGNED FOR GENERAL PURPOSE AMPLIFIER AND LOW SPEED SWITCHING APPLICATIONS

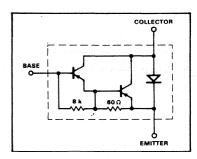
- 100 W DISSIPATION AT 25°C CASE
- **8.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT**
- hFE TYPICAL OF 4000 AT 4.0 A
- COMPLEMENT TO 2N6055, 2N6056

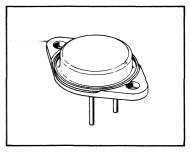
ABSOLUTE MAXIMUM RATINGS

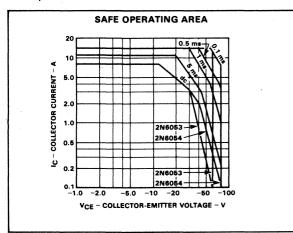
Maximum Vo	oltages and Currents	2N6053	2N6054	
V _{CE}	Collector to Emitter Voltage	-60 V	-80 V	
VCB	Collector to Base Voltage	-60 V	-80 V	
VEB	Emitter to Base Voltage	-5.0 V	-5.0 V	
lc lc	Continuous Collector Current	8.0 A	8.0 A	
lČ	Peak Collector Current	16 A	16 A	
· IB	Continuous Base Current	0.12 A	0.12 A	

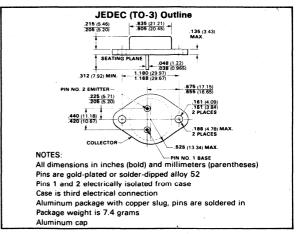
Total Dissipation @ 25°C Case Temperature 100 W P_{D} Derate Linearly from 25°C 0.57 W/°C

Maximum Temperatures

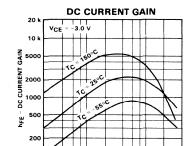

Storage and Operation Junction Temperatures -65°C to +200°C T_{J} , T_{sta}


Thermal Characteristics


 $R_{\theta JC}$ Thermal Resistance, Junction to Case Tp


Maximum Pin Temperature (Soldering, 10 s)

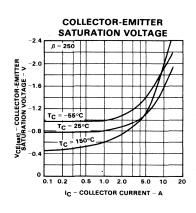
1.75°C/W 235°C


FAIRCHILD • 2N6053 • 2N6054

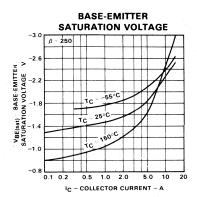
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

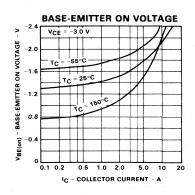
	CHARACTERISTIC	2N6053		2N6	054			
SYMBOL		MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARACT	ERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-60		-80		v	I _C = 100 mA, I _B = 0	
ICEO	Collector Cutoff Current		0.5		0.5	mA	$V_{CE} = -30 \text{ V, } I_{B} = 0$ $V_{CE} = -40 \text{ V, } I_{B} = 0$	
^I CEX	Collector Cutoff Current		0.5 5.0		0.5	mA mA mA	$V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V},$ $V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V},$ $V_{CC} = -60 \text{ V}, V_{DC} = 1.5 \text{ V}.$	
CEX					5.0	mA	$V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$ $V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
I _{EBO}	Emitter Cutoff Current		2.0		2.0	mA	$V_{EB} = -5.0 \text{ V}, I_{C} = 0$	
N CHARACTE	ERISTICS							
h _{FE}	DC Current Gain (Note 1)	750 100	18 k	750 100	18 k		$I_C = 4.0 \text{ A}, V_{CE} = -3.0 \text{ V}$ $I_C = 8.0 \text{ A}, V_{CE} = -3.0 \text{ V}$	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)	. 2	-2.0 -3.0		-2.0 -3.0	V V	I _C = 4.0 A, I _B = 16 mA I _C = 8.0 A, I _B = 80 mA	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-4.0		-4.0	V	I _C = 8.0 A, I _B = 80 mA	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-2.8		-2.8	٧	$I_C = 4.0 \text{ A, } V_{CE} = -3.0 \text{ V}$	
YNAMIC CHA	ARACTERISTICS							
C _{ob}	Output Capacitance		300		300	pF	$V_{CB} = -10 \text{ V}, I_{E} = 0, f = 0.1 \text{ MHz}$	
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	4.0		4.0			I _C = 3.0 A, V _{CE} = -3.0 V, f = 1.0 MH	
h _{fe}	Small Signal Current Gain	300		300			$I_C = 3.0 \text{ A}, V_{CE} = -3.0 \text{ V}, f = 1.0 \text{ kHz}$	

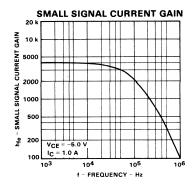
TYPICAL ELECTRICAL CHARACTERISTICS

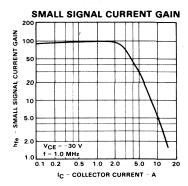

NOTE 1: Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

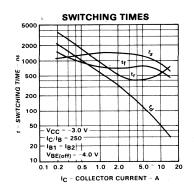
0.5 1.0 2.0

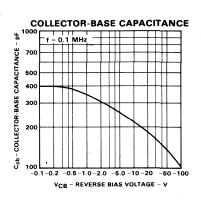

IC - COLLECTOR CURRENT - A


5.0 10




FAIRCHILD • 2N6053 • 2N6054


TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd)



POWER DARLINGTON

NPN SILICON

2N6055 2N6056

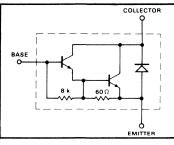
DESIGNED FOR GENERAL PURPOSE AMPLIFIER AND LOW SPEED SWITCHING APPLICATIONS

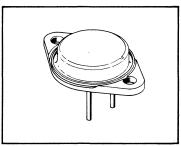
- 100 W DISSIPATION AT 25°C CASE
- **8.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT**
- hFF TYPICAL OF 4000 AT 4.0 A
- **COMPLEMENT TO 2N6053, 2N6054**

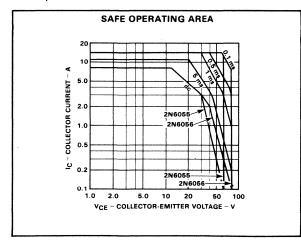
ABSOLUTE MAXIMUM RATINGS

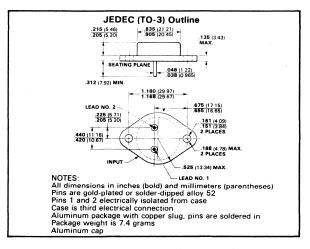
Maximum V	oltages and Currents	2N6055	2N6056
V_{CE}	Collector to Emitter Voltage	60 V	80 V
VCB	Collector to Base Voltage	60 V	80 V
VEB	Emitter to Base Voltage	5.0 V	5.0 V
lc .	Continuous Collector Current	8.0 A	8.0 A
١Ċ	Peak Collector Current	16 A	16 A
ΙΒ	Continuous Base Current	0.12 A	0.12 A

Total Dissipation @ 25°C Case Temperature 100 W P_D Derate Linearly from 25°C 0.57 W/°C


Maximum Temperatures


Storage and Operation Junction Temperatures -65°C to +200°C T_J, T_{sta}


Thermal Characteristics


 $R_{\theta JC}$ Tp Maximum Pin Temperature (Soldering, 10 s)

Thermal Resistance, Junction to Case 1.75°C/W 235°C

FAIRCHILD • 2N6055 • 2N6056

2N6055

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

		2N6055		2N6056				
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARACT	ERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80		٧	I _C = 100 mA, I _B = 0	
ICEO	Collector Cutoff Current		0.5		0.5	mA	V _{CE} = 30 V, I _B = 0 V _{CE} = 40 V, I _B = 0	
			0.5		0.5	mA mA	V _{CE} = 60 V, V _{BE} = -1.5 V V _{CF} = 80 V, V _{RF} = -1.5 V	
CEX	Collector Cutoff Current		5.0			mA	V _{CE} = 60 V, V _{BE} = -1.5 V, T _C = 150°C	
					5.0	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
I _{EBO}	Emitter Cutoff Current		2.0		2.0	mA	V _{EB} = 5.0 V, I _C = 0	
N CHARACTE	ERISTICS							
h _{FE}	DC Current Gain (Note 1)	750 100	18 k	750 100	18 k		I _C = 4.0 A, V _{CE} = 3.0 V I _C = 8.0 A, V _{CE} = 3.0 V	
Vost	Collector-Emitter Saturation		2.0		2.0	٧	I _C = 4.0 A, I _B = 16 mA	
V _{CE(sat)}	Voltage (Note 1)		3.0		3.0	V	I _C = 8.0 A, I _B = 80 mA	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		4.0		4.0	V	I _C = 8.0 A, I _B = 80 mA	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		2.8		2.8	v	I _C = 4.0 A, V _{CE} = 3.0 V	

h_{fe} Small Signal Current Gain

NOTE 1: Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

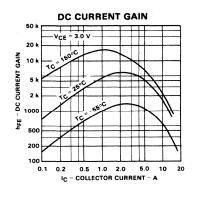
Output Capacitance

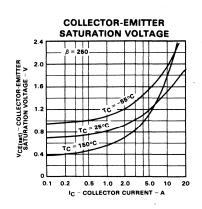
Magnitude of Common Emitter

Small Signal Current Gain

DYNAMIC CHARACTERISTICS

 C_{ob}


hfe


TYPICAL ELECTRICAL CHARACTERISTICS

200

4.0

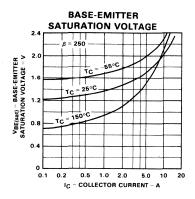
300

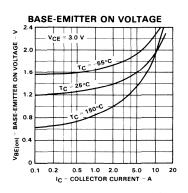
рF

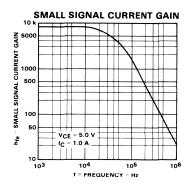
 $V_{CB} = 10 \text{ V, I}_{E} = 0, f = 0.1 \text{ MHz}$

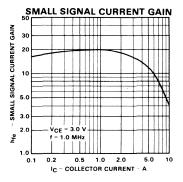
 I_C = 3.0 A, V_{CE} = 3.0 V, f = 1.0 MHz

 I_C = 3.0 A, V_{CE} = 3.0 V, f = 1.0 kHz

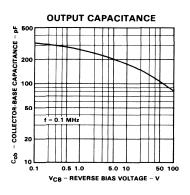

200


4.0


300


FAIRCHILD • 2N6055 • 2N6056

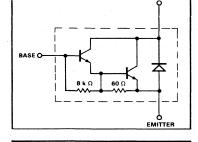
TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd)



POWER DARLINGTON

NPN SILICON

2N6057 2N6058 2N6059


COLLECTOR

DESIGNED FOR GENERAL PURPOSE AMPLIFIERS AND LOW SPEED SWITCHING APPLICATIONS

- 150 W DISSIPATION AT 25°C CASE
- 12 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- hFE TYPICAL OF 4000 AT 3.0 A
- COMPLEMENT TO 2N6050, 2N6051, 2N6052

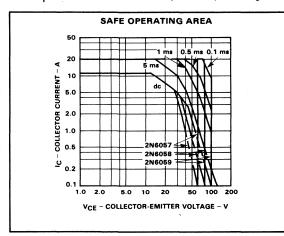
ABSOLUTE MAXIMUM RATINGS

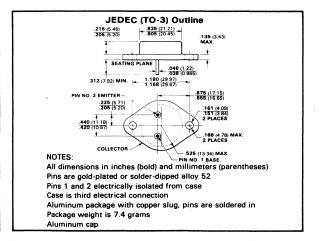
Maximum	Voltages and Currents	2N6057	2N6058	2N6059
VCE	Collector to Emitter Voltage	60 V	80 V	100 V
VCB	Collector to Base Voltage	60 V	80 V	100 V
VFR	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
lc	Continuous Collector Current	12 A	12 A	12 A
lc .	Peak Collector Current	20 A	20 A	20 A
ΙB	Continuous Base Current	0.2 A	0.2 A	0.2 A

Maximum Power Dissipation

P_D Total Dissipation @ 25°C Case Temperature Derate Linearly from 25°C 150 W 0.857 W/°C

Maximum Temperatures


T_J,T_{Stq} Storage and Operation Junction Temperatures


-65°C to +200°C

1.17 °C/W 235°C

Thermal Characteristics

R_{\theta JC} Thermal Resistance, Junction to Case
Tp Maximum Pin Temperature (Soldering, 10 s)

FAIRCHILD 2N6057 • 2N6058 • 2N6059

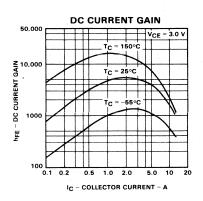
CVMADO	CHARACTERISTIC	2N	6057	2N6	058	2N6	059		TEGE COMPLETIONS
SYMBOL		MIN	MAX	UNITS	TEST CONDITIONS				
F CHARACT	ERISTICS								
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80		100		V	I _C = 100 mA, I _B = 0
CEO	Collector Cutoff Current		1.0	•	1.0		1.0	mA mA mA	V _{CE} = 30 V, I _B = 0 V _{CE} = 40 V, I _B = 0 V _{CE} = 50 V, I _B = 0
^I EBO	Emitter Cutoff Current	1	2.0		2.0		2.0	mA	V _{EB} = 5.0 V, I _C = 0
			1.0		1.0		1.0	mA mA mA	V _{CE} = 60 V, V _{BE} = -1.5 V _{CE} = 80 V, V _{BE} = -1.5 V _{CE} = 100 V, V _{BE} = -1.8
CEX	Collector Cutoff Current		5.0					mA	V _{CE} = 60 V, V _{BE} = -1.5 T _C = 150°C
					5.0			mA	V _{CE} = 80 V, V _{BE} = -1.5 T _C = 150°C
							5.0	mA	$V_{CE} = 100 \text{ V}, V_{BE} = -1.5$ $T_{C} = 150^{\circ}\text{C}$
N CHARACTI	ERISTICS								
h _{FE}	DC Current Gain (Note 1)	750 100	18 k	750 100	18 k	750 100	18 k		I _C = 6.0 A, V _{CE} = 3.0 V I _C = 12 A, V _{CE} = 3.0 V
· ·	Collector-Emitter Saturation		2.0		2.0		2.0	V	I _C = 6.0 A, I _B = 24 mA
V _{CE(sat)}	Voltage (Note 1)		3.0		3.0		3.0	V	I _C = 12 A, I _B = 120 mA
·V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		4.0		4.0		4.0	٧ .	I _C = 12 A, I _B = 120 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		2.8		2.8	-	2.8	٧	I _C = 6.0 A, V _{CE} = 3.0 V
NAMIC CHA	ARACTERISTICS								
c _{ob}	Output Capacitance		300		300		300	pF	V _{CB} = 10 V, I _E = 0, f = 0.1 MHz
h _{fe}	Magnitude of Common Emitter Small Signal Short Circuit Forward Current Transfer Ratio	4.0		4.0		4.0			I _C = 5.0 A, V _{CE} = 3.0 V, f = 1.0 MHz

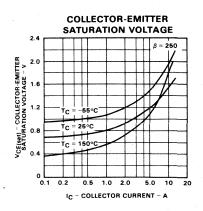
300

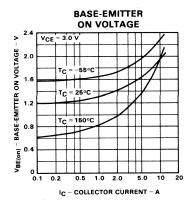
300

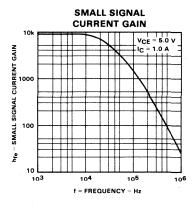
I_C = 5.0 A, V_{CE} = 3.0 V, f = 1.0 kHz

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


h_{fe}


Small Signal Current Gain

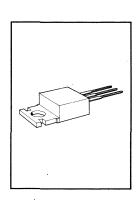

300

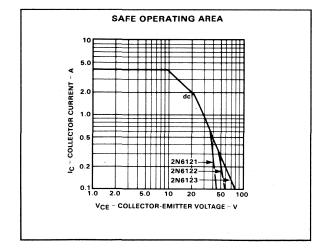

FAIRCHILD 2N6057 • 2N6058 • 2N6059

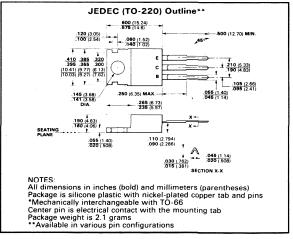
TYPICAL ELECTRICAL CHARACTERISTICS

POWER TRANSISTOR

NPN SILICON


2N6121 2N6122 2N6123

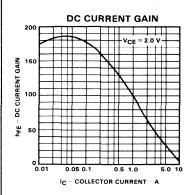

DESIGNED FOR GENERAL PURPOSE AMPLIFIER APPLICATIONS

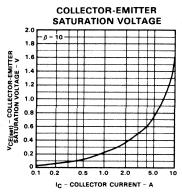

- 40 W DISSIPATION AT 25°C CASE
- 4.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 0.6 V MAXIMUM V_{CE(sat)} @ 1.5 A
- COMPLEMENTS 2N6124, 2N6125, 2N6126

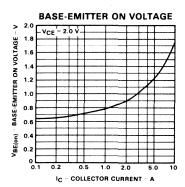
ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum Vo	tages and Currents	2N6121	2N6122	2N6123	
VCEO	Collector to Emitter Voltage	45 V	60 V	80 V	
V _{CBO}	Collector to Base Voltage	45 V	60 V	80 V	
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V	
I _C	Continuous Collector Current	4.0 A	4.0 A	4.0 A	
I _B	Continuous Base Current	1.0 A	1.0 A	1.0 A	
Maximum Pov	ver Dissipation				
PD	Total Dissipation @ 25°C Case Temp	erature		40 W	
	Derate Linearly from 25°C			0.32 W/°C	
Maximum Ter	nperatures				
T _J , T _{stq}	Storage and Operation Junction Ten	peratures	−65°C to +150°C		
Thermal Chara	acteristics				
$R_{oldsymbol{ heta}JC}$	Thermal Resistance, Junction to Cas	e		3.12°C/W	

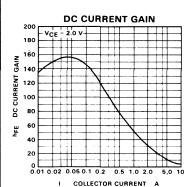
FAIRCHILD • 2N6121 • 2N6122 • 2N6123

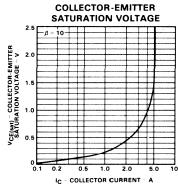

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

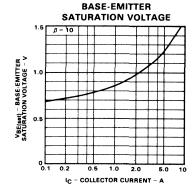

CVMDOL	CHARACTERISTIC	2N	6121	2N	6122	2N	6123		TEST 001/01/01/01	
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
F CHARAC	TERISTICS									
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	45		60		80		V	I _C = 100 mA, I _B = 0	
			1.0					mA	V _{CE} = 45 V, I _B = 0	
CEO	Collector Cutoff Current				1.0			mA	$V_{CE} = 60 \text{ V}, I_B = 0$	
							1.0	mA	$V_{CE} = 80 \text{ V}, I_B = 0$	
			0.1					mA	V _{CE} = 45 V, V _{BE} = -1.5 V	
			100		0.1			mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V}$	
							0.1	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V}$	
CEX	Collector Cutoff Current		2.0					mA	$V_{CE} = 45 \text{ V}, V_{BE} = -1.5 \text{ V}$ $T_{C} = 125^{\circ}\text{C}$	
					2.0			mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V}$ $T_{C} = 125^{\circ}\text{ C}$	
	e e a servició de la composició de la comp	100					2.0	mA	V _{CE} = 80 V, V _{BE} = -1.5 V T _C = 125°C	
			0.1					mA	V _{CB} = 45 V, I _E = 0	
СВО	Collector Cutoff Current		-		0.1	4		mA	$V_{CB} = 60 \text{ V}, I_{E} = 0$	
							0.1	mΑ	V _{CB} = 80 V, I _E = 0	
^I EBO	Emitter Cutoff Current		1.0		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0	
V CHARACT	ERISTICS									
hFE	DC Current Gain (Note 1)	25	100	25	100	20	80		I _C = 1.5 A, V _{CE} = 2.0 V	
"FC	To carrotte dam (trotte tr	10		10		7.0			I _C = 4.0 A, V _{CE} = 2.0 V	
V-=-	Collector-Emitter Saturation		0.6		0.6	,	0.6	V	I _C = 1.5 A, I _B = 0.15 A	
V _{CE(sat)}	Voltage (Note 1)		1.4		1.4		1.4	,V	$I_C = 4.0 \text{ A}, I_B = 1.0 \text{ A}$	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.2		1.2		1.2	>	I _C = 1.5 A, V _{CE} = 2.0 V	
YNAMIC CH.	ARACTERISTICS			-						
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	2.5		2.5		2.5		-	I _C = 1.0 A, V _{CE} = 4.0 V, f = 1.0 MH:	
h _{fe}	Small Signal Current Gain	25		25	<u> </u>	25	1		I _C = 0.1 A, V _{CE} = 2.0 V, f = 1.0 kHz	

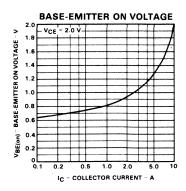

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

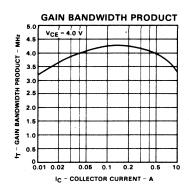
TYPICAL ELECTRICAL CHARACTERISTICS


2N6121 • 2N6122







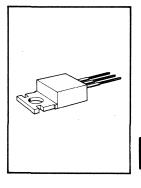

2N6123

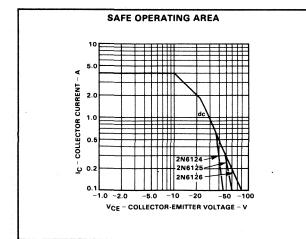
POWER TRANSISTOR

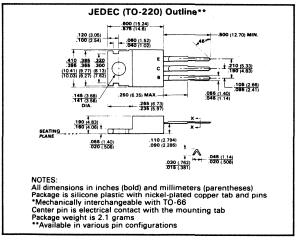
PNP SILICON

2N6124 2N6125 2N6126

DESIGNED FOR GENERAL PURPOSE AMPLIFIER APPLICATIONS

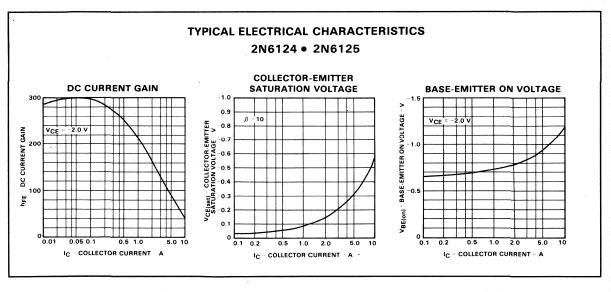

- 40 W DISSIPATION AT 25°C CASE
- 4.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- -0.6 V MAXIMUM VCE(sat) @ 1.5 A
- COMPLEMENTS 2N6121, 2N6122, 2N6123


ABSOLUTE MAXIMUM RATINGS (Note 1)


 $R_{\theta}JC$

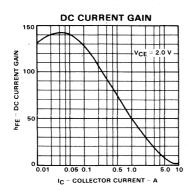
Maximum Vol	tages and Currents	2N6124	2N6125	2N6126	
VCEO	Collector to Emitter Voltage	-45 V	− 60 V	−80 V	
VCBO	Collector to Base Voltage	-45 V	60 V	−80 V	
VEBO	Emitter to Base Voltage	-5.0 V	−5.0 V	−5.0 V	
lc C	Continuous Collector Current	4.0 A	4.0 A	4.0 A	
I IB	Continuous Base Current	1.0 A	1.0 A	1.0 A	
Maximum Pow	ver Dissipation				
PD	Total Dissipation @ 25°C Case Temp Derate Linearly from 25°C	perature		40 W 0.32 W/°C	
Maximum Ten	peratures				
T _J , T _{stg}	T _{.I} , T _{stq} Storage and Operation Junction Temperatures				
Thermal Chara	cteristics				

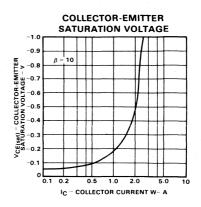
Thermal Resistance, Junction to Case

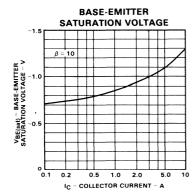


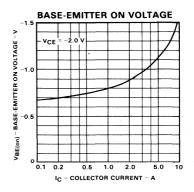
3.12°C/W

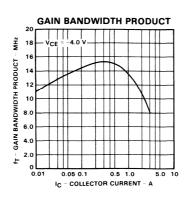
FAIRCHILD • 2N6124 • 2N6125 • 2N6126


SYMBOL	CHARACTERISTIC	2N	2N6124		6125	2N	6126		TEST COMPLETIONS	
STIVIBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARAC	TERISTICS						1.11			
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-45		-60		-80		٧	I _C = 100 mA, I _B ≈ 0	
ICEO	Collector Cutoff Current		1.0		1.0		1.0	mA mA mA	V _{CE} = -45 V, I _B = 0 V _{CE} = -60 V, I _B = 0 V _{CE} = -80 V, I _B = 0	
			0.1		0.1		0.1	mA	V _{CE} = -45 V, V _{BE} = 1.5 V V _{CE} = -60 V, V _{BE} = 1.5 V V _{CE} = -80 V, V _{BE} = 1.5 V V _{CE} = -45 V, V _{BE} = 1.5 V	
CEX	Collector Cutoff Current		2.0		2.0			mA mA	T _C = 125°C V _{CE} = -60 V, V _{BE} = 1.5 V T _C = 125°C V _{CE} = -80 V, V _{BE} = 1.5 V	
			-				2.0	mA	T _C = 125°C	
СВО	Collector Cutoff Current		0.1		0.1		0.1	mA mA mA	$V_{CB} = -45 \text{ V}, I_{E} = 0$ $V_{CB} = -60 \text{ V}, I_{E} = 0$ $V_{CB} = -80 \text{ V}, I_{E} = 0$	
^I EBO	Emitter Cutoff Current		1.0		1.0		1.0	mA	$V_{EB} = -5.0 \text{ V}, I_{C} = 0$	
N CHARACT	ERISTICS									
hFE	DC Current Gain (Note 1)	25 10 .	100	25 10	100	20 7.0	80		$I_C = 1.5 \text{ A}, \ V_{CE} = -2.0 \text{ V}$ $I_C = 4.0 \text{ A}, \ V_{CE} = -2.0 \text{ V}$	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-0.6 -1.4		-0.6 -1.4		-0.6 -1.4	V V	I _C = 1.5 A, I _B = 0.15 A I _C = 4.0 A, I _B = 1.0 A	
V _{BE} (on)	Base-Emitter "On" Voltage (Note 1)		-1.2		-1.2		-1.2	٧	I _C = 1.5 A, V _{CE} = -2.0 V	
YNAMIC CH	ARACTERISTICS									
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	2.5		2.5		2.5			I _C = 1.0 A, V _{CE} = -4.0 V, f = 1.0 MH:	
h _{fe}	Small Signal Current Gain	25		25		25			I _C = 0.1 A, V _{CE} = -2.0 V, f = 1.0 kHz	


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

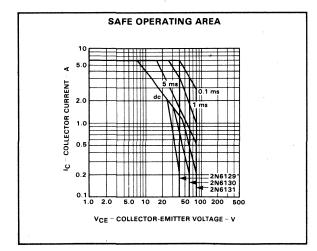


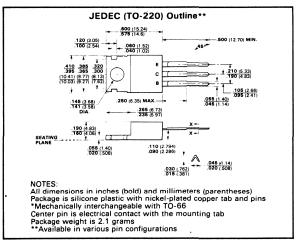

FAIRCHILD • 2N6124 • 2N6125 • 2N6126


TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd) 2N6126

POWER TRANSISTOR

NPN SILICON

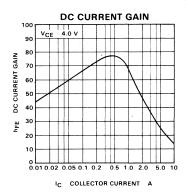

2N6129 2N6130 2N6131

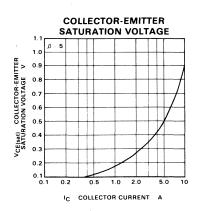

DESIGNED FOR GENERAL PURPOSE AMPLIFIER APPLICATIONS

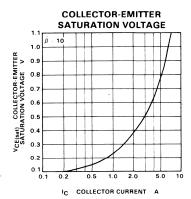
- 50 W DISSIPATION AT 25°C CASE
- 7.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 20 TO 100 hFE AT IC 2.5 A
- COMPLEMENTS 2N6132, 2N6133, 2N6134

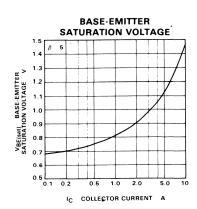
ABSOLUTE MAXIMUM RATINGS (Note 1)

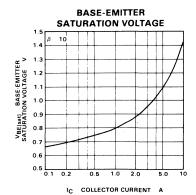
Maximum Vol	tages and Currents	2N6129	2N6130	2N6131	[
V_{CEO}	Collector to Emitter Voltage	40 V	60 V	80 V	
V _{CBO}	Collector to Base Voltage	40 V	60 V	80 V	
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V	·
	Continuous Collector Current	7.0 A	7.0 A	7.0 A	
I _C	Continuous Base Current	3.0 A	3.0 A	3.0 A	
Maximum Pow	er Dissipation				
PD	Total Dissipation @ 25°C Case Ten Derate Linearly from 25°C	Total Dissipation @ 25°C Case Temperature		50 W 0.4 W/°C	
Maximum Ten	peratures]
T _J , T _{stg}	Storage and Operation Junction Te	emperatures	- 65°	°C to +150°C	
Thermal Chara	cteristics				· .
$R_{ heta JC}$	Thermal Resistance, Junction to Ca	ase		2.5°C/W	

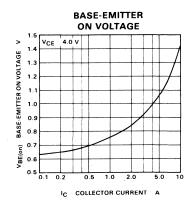



FAIRCHILD • 2N6129 • 2N6130 • 2N6131


SYMBOL	CHARACTERISTIC	2N6129		2N6130		2N6131				
STIMBUL	CHARACTERISTIC			MAX	UNIT	TEST CONDITIONS				
F CHARAC	TERISTICS									
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		V	I _C = 100 mA, I _B = 0	
CEO	Collector Cutoff Current		2.0		2.0		2.0	mA mA mA	V _{CE} = 40 V, I _B = 0 V _{CE} = 60 V, I _B = 0 V _{CE} = 80 V, I _B = 0	
¹ CEX	Collector Cutoff Current		2.0		0.2		0.2	mA mA mA	V _{CE} = 40 V, V _{BE} = -1.5 V V _{CE} = 60 V, V _{BE} = -1.5 V V _{CE} = 80 V, V _{BE} = -1.5 V V _{CE} = 40 V, V _{BE} = -1.5 V T _C = 125° C	
					2.0	7	2.0	mA mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V}$ $T_{C} = 125^{\circ} \text{ C}$ $V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V}$ $T_{C} = 125^{\circ} \text{ C}$	
СВО	Collector Cutoff Current		0.5		0.5		0.5	mA mA mA	V _{CB} = 40 V, I _E = 0 V _{CB} = 60 V, I _E = 0 V _{CB} = 80 V, I _E = 0	
^I EBO	Emitter Cutoff Current		1.0		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0	
CHARACT	ERISTICS		-			1		L		
hFE	DC Current Gain (Note 1)	20 7.0	100	20 7.0	100	20 5.0	100		I _C = 2.5 A, V _{CE} = 4.0 V I _C = 7.0 A, V _{CE} = 4.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.4		1.4		1.8	V	I _C = 7.0 A, I _B = 3.0 A	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		2.0		2.0		2.0	V ,	I _C = 2.5 A, V _{CE} = 4.0 V	
NAMIC CH	ARACTERISTICS									
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	2.5		2.5		2.5			I _C = 1.0 A, V _{CE} = 4.0 V, f = 1.0 MH	
h _{fe}	Small Signal Current Gain	25		25		25			I _C = 0.1 A, V _{CE} = 4.0 V, f = 1.0 kHz	
		J	<u> </u>		<u> </u>		L		- · · · · · · · · · · · · · · · · · · ·	

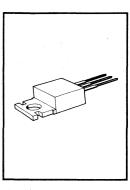

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

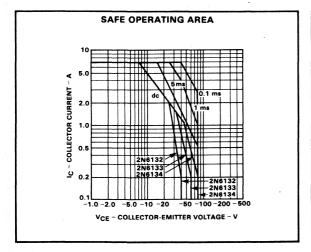

TYPICAL ELECTRICAL CHARACTERISTICS

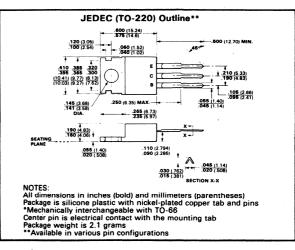


POWER TRANSISTOR

PNP SILICON

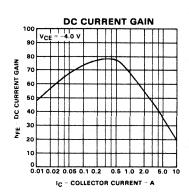

2N6132 2N6133 2N6134

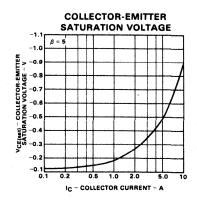

DESIGNED FOR GENERAL PURPOSE AMPLIFIER APPLICATIONS

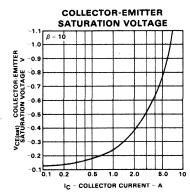

- 50 W DISSIPATION AT 25°C CASE
- 7 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 20 TO 100 h_{FE} AT I_C 2.5 A
- COMPLEMENTS 2N6129, 2N6130, 2N6131

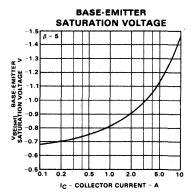
ABSOLUTE MAXIMUM RATINGS (Note 1)

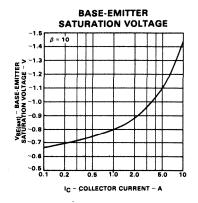
Maximum Vol	tages and Currents	2N6132	2N6133	2N6134
VCEO	Collector to Emitter Voltage	-40 V	−60 V	−80 V
VCBO	Collector to Base Voltage	-40 V	-60 V	-80 V
VEBO	Emitter to Base Voltage	−5.0 V	−5.0 V	−5.0 V
lc lc	Continuous Collector Current	7.0 A	7.0 A	7.0 A
I _B	Continuous Base Current	3.0 A	3.0 A	3.0 A
Maximum Pov	ver Dissipation			
PD	Total Dissipation @ 25°C Case Ten	nperature		50 W
_ ·	Derate Linearly from 25°C			0.4 W/°C
Maximum Ten	nperatures			
T _J , T _{sta}	Storage and Operation Junction Te	emperatures	–65°C	C to +150°C
Thermal Chara	acteristics			
$R_{ heta}JC$	Thermal Resistance, Junction to C	ase		2.5°C/W

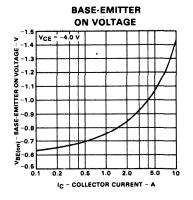



FAIRCHILD • 2N6132 • 2N6133 • 2N6134


SYMBOL	CHARACTERISTIC	2N6132		2N6133		2N6134			
SYMBOL		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARAC	TERISTICS	······································				-			
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-40		-60		-80		٧	I _C = 100 mA, I _B = 0
CEO	Collector Cutoff Current		2.0		2.0		2.0	mA mA mA	V _{CE} = -40 V, I _B = 0 V _{CE} = -60 V, I _B = 0 V _{CE} = -80 V, I _B = 0
CEX	Collector Cutoff Current	2.0	0.2		0.2		0.2	mA mA mA	VCE = -40 V, VBE = 1.5 V VCE = -60 V, VBE = 1.5 V VCE = -80 V, VBE = 1.5 V VCE = -40 V, VBE = 1.5 V TC = 125°C
GEA					2.0		2.0	mA mA	V _{CE} = -60 V, V _{BE} = 1.5 V T _C = 125°C V _{CE} = -80 V, V _{BE} = 1.5 V T _C = 125°C
СВО	Collector Cutoff Current		0.5		0.5		0.5	mA mA mA	V _{CB} = -40 V, I _E = 0 V _{CB} = -60 V, I _E = 0 V _{CB} = -80 V, I _E = 0
^I EBO	Emitter Cutoff Current		1.0		1.0		1.0	mA	V _{EB} = -5.0 V, I _C = 0
CHARACT	ERISTICS		·			······			
hFE	DC Current Gain (Note 1)	20 7.0	100	20 7.0	100	20 5.0	100		I _C = 2.5 A, V _{CE} = -4.0 V I _C = 7.0 A, V _{CE} = -4.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-1.4		-1.4		-1.8	V	I _C = 7.0 A, I _B = 3.0 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-2.0		-2.0		-2.0	٧	I _C = 2.5 A, V _{CE} = - 4.0 V
NAMIC CH	ARACTERISTICS				***************************************				
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	2.5		2.5		2.5	-		I _C = 1.0 A, V _{CE} = -4.0 V, f = 1.0 MH
h _{fe}	Small Signal Current Gain	25		25		25		· · ·	I _C = 0.1 A, V _{CE} = -4.0 V, f = 1.0 kH

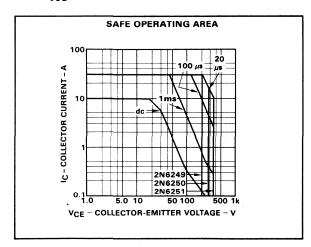

FAIRCHILD • 2N6132 • 2N6133 • 2N6134

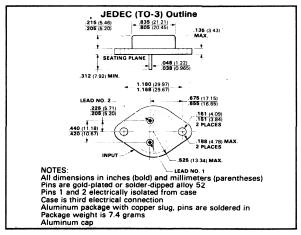

TYPICAL ELECTRICAL CHARACTERISTICS



POWER TRANSISTOR

NPN SILICON


2N6249 2N6250 2N6251


POWER SWITCHING TRANSISTOR FOR APPLICATIONS IN INDUSTRIAL AND COMMERCIAL EQUIPMENT

- 100 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- EXCELLENT IN LINE OPERATED INVERTER AND SWITCHING REGULATOR APPLICATIONS

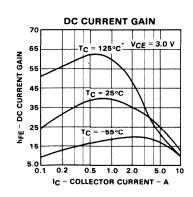
ABSOLUTE MAXIMUM RATINGS (Note 1)

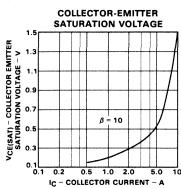
Maximum Vol	tages and Currents	2N6249	2N6250	2N6251	
V _{CEO}	Collector to Emitter Voltage	200 V	275 V	350 V	
V _{CBO}	Collector to Base Voltage	300 V	375 V	450 V	
V _{EBO}	Emitter to Base Voltage	6.0 V	6.0 V	6.0 V	
lc	Continuous Collector Current	10 A	10 A	10 A	
١č	Peak Collector Current	30 A	30 A	30 A	
I _B	Continuous Base Current	10 A	10 A	10 A	
_	ver Dissipation				
P_{D}	Total Dissipation @ 25°C Case Temper	rature		175 W	
D	Derate Linearly from 25°C			1.0 W/°C	
Maximum Ten	nperatures				U
T_J, T_{sta}	Storage and Operation Junction Temp	eratures	−65°0	C to +200°C	
Thermal Chara	acteristics				
$R_{ heta}JC$	Thermal Resistance, Junction to Case			1.0 °C/W	<u> </u>

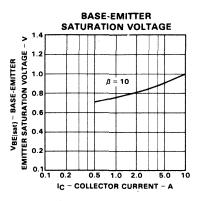
FAIRCHILD • 2N6249 • 2N6250 • 2N6251

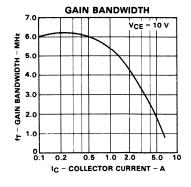
evuso:	CHARACTERISTIC	2N6249		2N6250		2N6251			
SYMBOL		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
FF CHARAC	TERISTICS			3.4					
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	200		275		350		٧	I _C = 200 mA, I _B = 0
V _{CER(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	225		300		375		V	I _C = 200 mA, R _{BE} = 50 Ω
VEBO	Emitter-Base Breakdown Voltage	6.0		6.0		6.0		V	IE = 1.0 mA, IC = 0
ICEO	Collector Cutoff Current		5.0		5.0		5.0	mA mA mA	V _{CE} = 150 V, I _B = 0 V _{CE} = 225 V, I _B = 0 V _{CE} = 300 V, I _B = 0
ICEV	Collector Cutoff Current		5.0		5.0		5.0	mA mA mA	V _{CE} = 225 V, V _{BE} = -1.5 V V _{CE} = 300 V, V _{BE} = -1.5 V V _{CE} = 375 V, V _{BE} = -1.5 V V _{CE} = 225 V, V _{BE} = -1.5 V, T _C = 125°C
					10		10	mA mA	V _{CE} = 300 V, V _{BE} = -1.5 V, T _C = 125°C V _{CE} = 375 V, V _{BE} = -1.5 V, T _C = 125°C
^I EBO	Emitter Cutoff Current		1.0		1.0		1.0	mA	V _{EB} = 6.0 V, I _C = 0
N CHARACT	ERISTICS								
hFE	DC Current Gain (Note 1)	10	50	8.0	50	6.0	50		I _C = 10 A, V _{CE} = 3.0 V
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		1.5		1.5		1.5	> > >	I _C = 10 A, I _B = 1.0 A I _C = 10 A, I _B = 1.25 A I _C = 10 A, I _B = 1.67 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		2.25	-	2.25		2.25	> > > > > > > > > > > > > > > > > > >	I _C = 10 A, I _B = 1.0 A I _C = 10 A, I _B = 1.25 A I _C = 10 A, I _B = 1.67 A
ECOND BREA	AKDOWN								
IS/b	Second Breakdown Collector Current with base forward biased	5.8		5.8		5.8		Α	t = 1.0 s (non repetitive), V _{CE} = 30 V
E _{S/b}	Second Breakdown Energy with base reversed biased	2.5		2.5		2.5		mJ	I_C = 10 A, $V_{BE(off)}$ = -4.0 V, L = 50 μh, R_B = 50 Ω
YNAMIC CH	ARACTERISTICS				: .				
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	2.5		2.5		2.5			I _C = 1.0 A, V _{CE} = 10 V, f = 1.0 MH

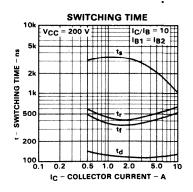
NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

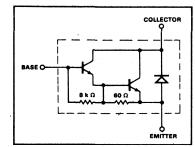

FAIRCHILD • 2N6249 • 2N6250 • 2N6251


SWITCHING CHARACTERISTICS


RESISTIVE LOAD


11201011112				 	 		
tr	Rise Time	·	2.0			μs	$V_{CC} = 200 \text{ V}, I_{C} = 10 \text{ A}, I_{B1} = 1.0 \text{ A},$ $t_{p} = 20 \mu\text{s}, \text{ Duty Cycle} = 500 \text{ Hz}$
ts t _f	Storage Time		3.5 1.0			μs μs	$V_{CC} = 200 \text{ V}, \ I_{C} = 10 \text{ A},$ $I_{B1} = I_{B2} = 1.0 \text{ A}, \ t_{p} = 20 \mu s,$ Duty Cycle = 500 Hz
tr	Rise Time			2.0		μs	$V_{CC} = 200 \text{ V}, I_{C} = 10 \text{ A}, I_{B1} = 1.25 \text{ A},$ $t_{p} = 20 \mu s, Duty Cycle = 500 \text{ Hz}$
ts tf	Storage Time Fall Time	-		3.5 1.0		μs	V_{CC} = 200 V, I_{C} = 10 A, I_{B1} = I_{B2} = 1.25 A, I_{p} = 20 μ s, Duty Cycle = 500 Hz
tr	Rise Time				2.0	μs	V _{CC} = 200 V, I _C = 10 A, I _{B1} = 1.67 A, t _p = 20 μs, Duty Cycle = 500 Hz
ts t _f	Storage Time				3.5 1.0	μs μs	$V_{CC} = 200 \text{ V}, I_{C} = 10 \text{ A},$ $I_{B1} = I_{B2} = 1.67 \text{ A}, t_{p} = 20 \mu \text{s},$ Duty Cycle = 500 Hz


TYPICAL ELECTRICAL CHARACTERISTICS


POWER DARLINGTON

NPN SILICON

2N6282 2N6283 2N6284

DESIGNED FOR GENERAL PURPOSE AMPLIFIERS AND LOW SPEED SWITCHING APPLICATIONS

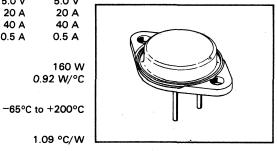
- 160 W DISSIPATION AT 25°C CASE
- 20 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- hFE TYPICAL OF 3000 AT 10 A
- COMPLEMENT TO 2N6285, 2N6286, 2N6287

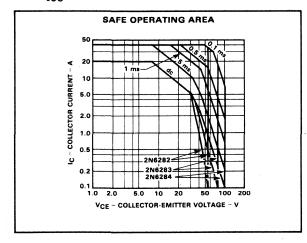
ABSOLUTE MAXIMUM RATINGS

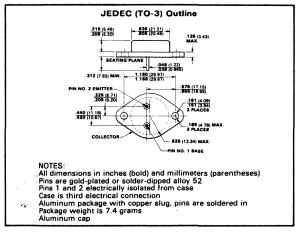
Maximum	Voltages and Currents	2N6282	2N6283	2N6284
VCE	Collector to Emitter Voltage	60 V	80 V	100 V
VCB	Collector to Base Voltage	60 V	80 V	100 V
VEB	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
lc	Continuous Collector Current	20 A	20 A	20 A
١č	Peak Collector Current	40 A	40 A	40 A
۱ _B	Continuous Base Current	0.5 A	0.5 A	0.5 A

Maximum Power Dissipation

PD Total Dissipation @ 25°C Case Temperature

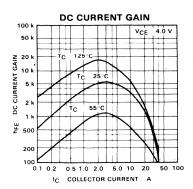

Derate Linearly from 25°C

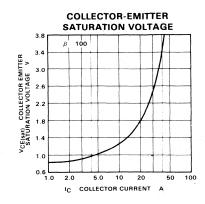

Maximum Temperatures

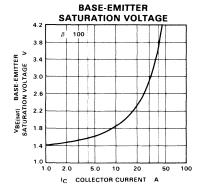

T_J,T_{Stq} Storage and Operation Junction Temperatures

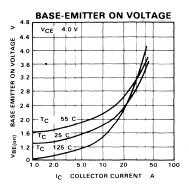
Thermal Characteristics

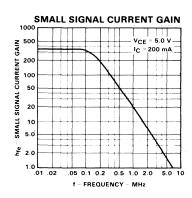
 $R_{m{ heta}JC}$ Thermal Resistance, Junction to Case

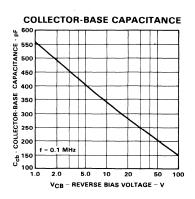



FAIRCHILD 2N6282 • 2N6283 • 2N6284


SYMBOL	CHARACTERISTIC	2N6282		2N6283		2N6284			
		MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
FF CHARACT	ERISTICS								
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80		100		V	I _C = 100 mA, I _B = 0
			1.0					mA	V _{CE} = 30 V, I _B = 0
ICEO	Collector Cutoff Current				1.0			mA	V _{CE} = 40 V, I _B = 0
							1.0	mA .	V _{CE} = 50 V, I _B = 0
•			0.5					mA	V _{CE} = 60 V, V _{BE} = -1.5 V
	·		ľ		0.5			mA	V _{CE} = 80 V, V _{BE} = -1.5 V
							0.5	mA	$V_{CE} = 100 \text{ V}, V_{BE} = -1.5 $
CEX	Collector Cutoff Current		5.0					mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V}$ $T_{C} = 150^{\circ}\text{C}$
				-	5.0			mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V}, T_{C} = 150 ^{\circ}\text{C}$
							5.0	mA	$V_{CE} = 100 \text{ V}, V_{BE} = -1.5 \text{ V}$ $T_{C} = 150^{\circ}\text{C}$
I _{EBO}	Emitter Cutoff Current		2.0		2.0		2.0	mA	$V_{EB} = 5.0 \text{ V, } I_{C} = 0$
N CHARACTE	ERISTICS								
h	DC Current Gain (Note 1)	750	18 k	750	18 k	750	18 k		I _C = 10 A, V _{CE} = 3.0 V
hFE	DC current dain (Note 1)	100		100	. A.	100			$I_C = 30 \text{ A}, V_{CE} = 3.0 \text{ V}$
	Collector-Emitter Saturation		2.0		2.0		2.0	V	I _C = 10 A, I _R = 40 mA
V _{CE(sat)}	Voltage (Note 1)		3.0		3.0		3.0	V	I _C = 20 A, I _B = 200 mA
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		4.0		4.0		4.0	v	I _C = 20 A, I _B = 200 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		2.8		2.8		2.8	V	I _C = 10 A, V _{CE} = 3.0 V
YNAMIC CHA	ARACTERISTICS								
C _{ob}	Output Capacitance		400		400		400	pF	V _{CB} = 10 V, I _E = 0, f = 0.1 MHz
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	4.0		4.0		4.0			I _C = 10 A, V _{CE} = 3.0 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	300		300		300			I _C = 10 A, V _{CE} = 3.0 V, f = 1.0 kHz


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


FAIRCHILD 2N6282 • 2N6283 • 2N6284



POWER DARLINGTON

PNP SILICON

2N6285 2N6286 2N6287

DESIGNED FOR GENERAL PURPOSE AMPLIFIER AND LOW SPEED SWITCHING APPLICATIONS

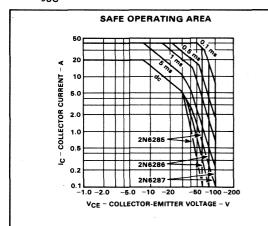
- 160 W DISSIPATION AT 25°C CASE
- 20 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- h_{EE} TYPICAL OF 3000 AT 10 A
- COMPLEMENT TO 2N6282, 2N6283, 2N6284

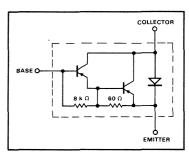
ABSOLUTE MAXIMUM RATINGS

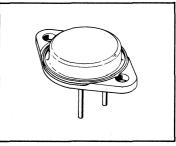
/laximum	Voltages and Currents	2N6285	2N6286	2N6287
V_{CE}	Collector to Emitter Voltage	-60 V	-80 V	-100 V
VCB	Collector to Base Voltage	-60 V	-80 V	-100 V
VEB	Emitter to Base Voltage	−5.0 V	-5.0 V	−5.0 V
lc	Continuous Collector Current	20 A	20 A	20 A
١č	Peak Collector Current	40 A	40 A	40 A
I _B	Continuous Base Current	0.5 A	0.5 A	0.5 A

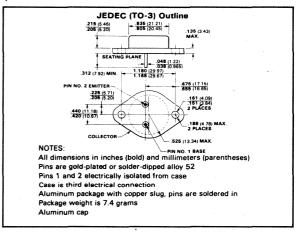
Maximum Power Dissipation

PD Total Dissipation @ 25°C Case Temperature


Derate Linearly from 25°C


Maximum Temperatures


T_J,T_{Sta} Storage and Operation Junction Temperatures

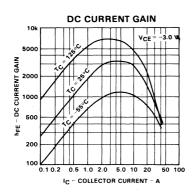

Thermal Characteristics

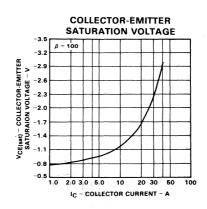
 $R_{ heta JC}$ Thermal Resistance, Junction to Case

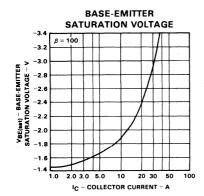
160 W

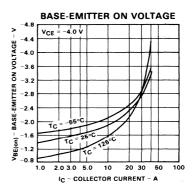
0.92 W/°C

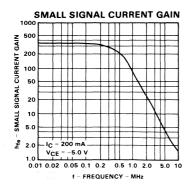
1.09°C/W

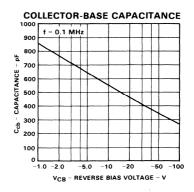

-65°C to +200°C


FAIRCHILD • 2N6285 • 2N6286 • 2N6287

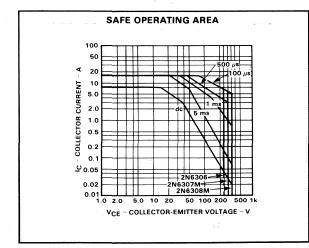

	Temperature unless otherwise noted)	

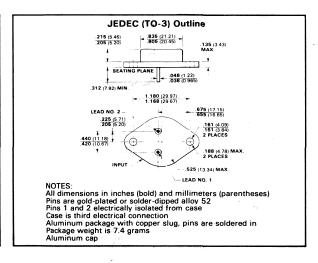

0.0.00	0114.0.4.075.0.710	2N6	285	2N6	286	2N6	287			
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS	
FF CHARACT	ERISTICS									
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-60		-80		-100		٧	I _C = 100 mA, I _B = 0	
			1.0					mA	V _{CE} = -30 V, I _B = 0	
I _{CEO}	Collector Cutoff Current				1.0			mA	$V_{CE} = -40 \text{ V, } I_{B} = 0$	
							1.0	mA	$V_{CE} = -50 \text{ V}, I_{B} = 0$	
		1	0.5					mA	$V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V}$	
					0.5			mA	$V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V}$	
			2				0.5	mA	$V_{CE} = -100 \text{ V}, V_{BE} = 1.5 \text{ V}$	
CEX	Collector Cutoff Current		5.0	-				mA	$V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
				-	5.0			mA	$V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
							5.0	· mA	V _{CE} = -100 V, V _{BE} = 1.5 V T _C = 150°C	
I _{EBO}	Emitter Cutoff Current		2.0		2.0		2.0	mA	V _{EB} = -5.0 V, I _C = 0	
N CHARACTI	ERISTICS									
L	DC Courses Coin (Note 1)	750	18 k	750	18 k	750	18 k		I _C = 10 A, V _{CE} = -3.0 V	
hFE	DC Current Gain (Note 1)	100		100		100			$I_C = 20 \text{ A, V}_{CE} = -3.0 \text{ V}$	
.,	Collector-Emitter Saturation		-2.0		-2.0		-2.0	٧	I _C = 10 A, I _B = 40 mA	
V _{CE(sat)}	Voltage (Note 1)		-3.0		-3.0		-3.0	V	$I_C = 20 \text{ A}, I_B = 200 \text{ mA}$	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-4.0		-4.0		-4.0	٧	I _C = 20 A, I _B = 200 mA	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-2.8		-2.8		-2.8	٧	I _C = 10 A, V _{CE} = -3.0 V	
YNAMIC CHA	ARACTERISTICS									
C _{ob}	Output Capacitance		600		600		600	pF	V _{CB} = -10 V, I _E = 0, f = 0.1 MHz	
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	4.0		4.0		4.0			I _C = 10 A, V _{CE} = -3.0 V, f = 1.0 MHz	
h _{fe}	Small Signal Current Gain	300		300		300			I _C = 10 A. V _{CE} = -3.0 V. f = 1.0 kHz	


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.



NPN SILICON

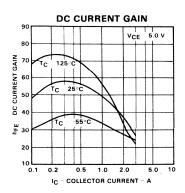

2N6306 2N6307M 2N6308M

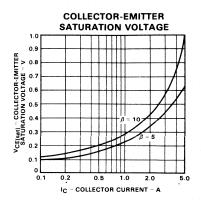

POWER TRANSISTOR DESIGNED FOR HIGH VOLTAGE INVERTERS, SWITCHING REGULATORS AND LINE-OPERATED AMPLIFIER APPLICATIONS

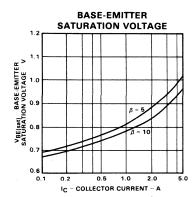
- 125 W DISSIPATION AT 25°C CASE
- 8.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT

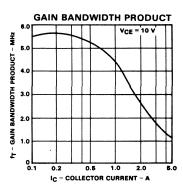
ABSOLUTE MAXIMUM RATINGS (Note 1)

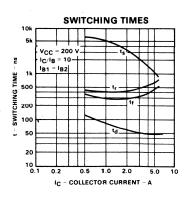
Maximum Voltages and Currents 2N6306 2N6307M 2N6	6308M
V _{CEO} Collector to Emitter Voltage 250 V 300 V	350 V
	500 V
V _{EBO} Emitter to Base Voltage 8.0 V 8.0 V	8.0 V
IC Continuous Collector Current 8.0 A 8.0 A	8.0 A
IC Peak Collector Current 16 A 16 A	16 A M
IB Continuous Base Current 4.0 A 4.0 A	4.0 A
Maximum Power Dissipation	
P _D Total Dissipation @ 25°C Case Temperature	125 W
Derate Linearly from 25°C 0.714	w/°c
Maximum Temperatures	
T _J , T _{stq} Storage and Operation Junction Temperatures -65°C to +	-200°C
Thermal Characteristics	
	.4°C/W
Tp Maximum Pin Temperature (Soldering, 10s)	235°C




FAIRCHILD • 2N6306 • 2N6307M • 2N6308M


ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


SYMBOL	CHARACTERISTIC	2N6306 2N6307M 2N6308M			TEST CONDITIONS					
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARAC										
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	250		300		350		v	I _C = 100 mA, I _B = 0	
ICEO	Collector Cutoff Current		0.5		0.5		0.5	mA mA mA	V _{CE} = 250 V, I _B = 0 V _{CE} = 300 V, I _B = 0 V _{CE} = 350 V, I _B = 0	
^I CEX	Collector Cutoff Current		0.5 2.5		0.5		0.5	mA mA mA	VCE = 500 V, VBE = -1.5 V VCE = 450 V, VBE = -1.5 V VCE = 500 V, VBE = -1.5 V VCE = 450 V, VBE = -1.5 V, TC = 150° C	
					2.5		2.5	mA mA	V _{CE} = 450 V, V _{BE} = -1.5 V, T _C = 150°C V _{CE} = 500 V, V _{BE} = -1.5 V,	
				L					T _C = 150°C	
^I EBO	Emitter Cutoff Current		1.0		1.0		1.0	mA	$V_{EB} = 8.0 \text{ V}, I_{C} = 0$	
N CHARACT	ERISTICS									
		15	75	15	75	12	60		I _C = 3.0 A, V _{CE} = 5.0 V	
pkE	DC Current Gain (Note 1)	4.0	TYP	4.0	TYP	3.0 	TYP		I _C = 8.0 A, V _{CE} = 5.0 V	
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		0.8 5.0		1.0 5.0		1.5 5.0	>	I _C = 3.0 A, I _B = 0.6 A I _C = 8.0 A, I _B = 2.0 A I _C = 8.0 A, I _B = 2.67 A	
VBE(sat)	Base-Emitter Saturation Voltage (Note 1)		2.3		2.3		2.5	V	I _C = 8.0 A, I _B = 2.0 A I _C = 8.0 A, I _B = 2.67 A	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.3		1.3		1.5	· V	I _C = 3.0 A, V _{CE} = 5.0 V	
ECOND BREA	AKDOWN									
E _{S/b}	Second Breakdown Energy with base reversed biased		180		180		180	mJ	$I_C = 3.0 \text{ A}, V_{BE(off)} = -1.5 \text{ V},$ L = 40 mH, R _{BE} = 3.0 k Ω	
YNAMIC CH	ARACTERISTICS '									
fΤ	Current-Gain-Bandwidth Product	5.0		5.0		5.0		MHz	$I_C = 0.3 \text{ A}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ MHz}$	
Cob	Output Capacitance		250		250		250	pF	V _{CB} = 10 V, I _E = 0, f = 0.1 MHz	
WITCHING C	HARACTERISTICS DAD									
tr	Rise Time		0.6		0.6		0.6	μς	$V_{CC} = 125 \text{ V}, I_{C} \approx 3.0 \text{ A}, I_{B1} = 0.6 \text{ A}$ $t_p = 25 \mu \text{s}$	
ts	@ PW 25 μs @ PW 5.0 μs		1.6 0.8		1.6 0.8		1.6 0.8	μs μs	V _{CC} = 125 V, I _C = 3.0 A, I _{B1} = 0.6 A, I _{B2} = 1.5 A	
tf	Fall Time		0.4		0.4		0.4	μs	$t_D = 25 \mu s$	


FAIRCHILD • 2N6306 • 2N6307M • 2N6308M

POWER DARLINGTON

NPN SILICON

2N6383 2N6384 2N6385

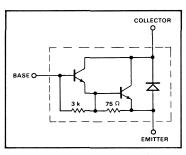
A GENERAL PURPOSE DARLINGTON FOR USE IN POWER SWITCHING, HAMMER DRIVER AND SERIES AND SHUNT REGULATOR APPLICATIONS

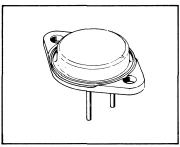
- 100 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- GOOD SECOND BREAKDOWN CAPABILITY
- HIGH DC CURRENT GAIN

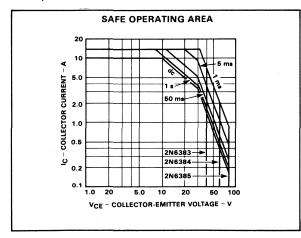
ABSOLUTE MAXIMUM RATINGS

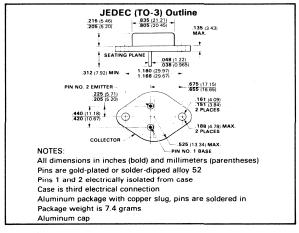
Maximum '	Voltages and Currents	2N6383	2N6384	2N6385
v_{CE}	Collector to Emitter Voltage	40 V	60 V	80' V
VCB	Collector to Base Voltage	40 V	60 V	80 V
VEB	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
lc	Continuous Collector Current	10 A	10 A	10 A
lc	Peak Collector Current	15 A	15 A	15 A
I _B	Continuous Base Current	0.25 A	0.25 A	0.25 A

PD Total Dissipation @ 25°C Case Temperature 100 W
Derate Linearly from 25°C 0.57 W/°C

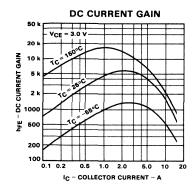

Maximum Temperatures

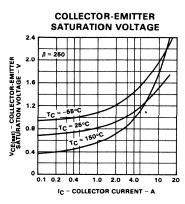

T_J,T_{Stq} Storage and Operation Junction Temperatures

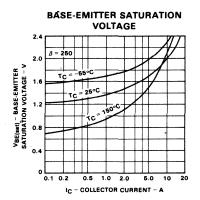

Thermal Characteristics

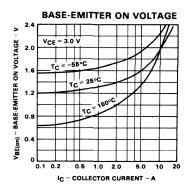

R_{ØJC} Thermal Resistance, Junction to Case T_P Maximum Pin Temperature (Soldering, 10 s)

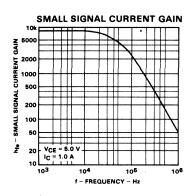
-65°C to +200°C 1.75 °C/W 235°C

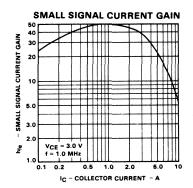


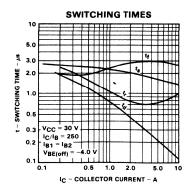


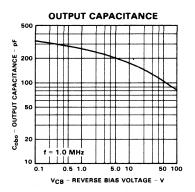



FAIRCHILD • 2N6383 • 2N6384 • 2N6385


01/14001		2N6383		2N6384		2N6385			TEST CONDITIONS
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
FF CHARACT	ERISTICS				·				
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		V	I _C = 200 mA, I _B = 0
V _{CER(susp}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		V	I_C = 200 mA, R_{BE} = 100 Ω
V _{CEV(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		V	$I_{C} = 200 \text{ mA}, V_{BE(off)} = -1.8$
V _F	Parallel Diode Forward Voltage Drop		4.0		4.0		4.0	V	I _C = -10 A
			1.0					mA	V _{CE} = 40 V, I _B = 0
					1.0			mA	V _{CE} = 60 V, I _B = 0
							1.0	mA	V _{CE} = 80 V, I _B = 0
CEO	Collector Cutoff Current		10	Trong to the	i n			mA	V _{CE} = 40 V, I _B = 0, T _C = 150°C
					10			mA	V _{CE} = 60 V, I _B = 0, T _C = 150°C
							10	mA -	V _{CE} = 80 V, I _B = 0, T _C = 150°C
			0.3					mA	V _{CE} = 40 V, V _{BE} = -1.5 V
			-		0.3			mA	V _{CE} = 60 V, V _{BE} = -1.5 V
							0.3	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V}$
CEV	Collector Cutoff Current		3.0					mA	V _{CE} = 40 V, V _{BE} = -1.5 V, T _C = 150°C
					3.0			_, mA	V _{CE} = 60 V, V _{BE} = -1.5 V, T _C = 150°C
							3.0	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150 ^{\circ}\text{C}$
IEBO	Emitter Cutoff Current		5.0		5.0		5.0	mA	V _{EB} = 5.0 V, I _C = 0
N CHARACTI	ERISTICS								
		1 k	20 k	1 k	20 k	1 k	20 k		I _C = 5.0 A, V _{CF} = 3.0 V
h _{FE}	DC Current Gain (Note 1)	100		100		100			I _C = 10 A, V _{CE} = 3.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		2.0 3.0		2.0 3.0	1	3.0	V	I _C = 5.0 A, I _B = 10 mA I _C = 10 A, I _B = 100 mA
V _{BE(on)}	Base-Emitter "On" Voltage		2.8		2.8		2.8	٧	I _C = 5.0 A, V _{CE} = 3.0 V
	(Note 1)		4.5	<u> </u>	4.5		4.5		I _C = 10 A, V _{CE} = 3.0 V
ECOND BREA	AKDOWN	Г							
	Second Breakdown Collector	2.85						Α	V _{CE} = 35 V t = 1.0 s (non repetitive)
I _{S/b}	Current with Base Forward			0.62				Α	V _{CE} = 55 V
•	Biased								t = 1.0 s (non repetitive)
						0.22		A ,	V _{CE} = 75 V t = 1.0 s (non repetitive)
E _{S/b}	Second Breakdown Energy with Base Reversed Biased	120		120		120		mj	I _C = 4.5 A, V _{BE(off)} = -1.5 L = 12 mH
YNAMIC CHA	ARACTERISTICS								
C _{ob}	Output Capacitance		200		200		200	pF	V _{CB} = 10 V, I _E = 0, f = 0.1 MHz
h _{fe}	Magnitude of Common Emitter Small Signal Short Circuit Forward Current Transfer Ratio	20		20		20			I _C = 1.0 A, V _{CE} = 5.0 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	1 k		1 k		1 k			I _C = 1.0 A, V _{CE} = 5.0 V, f = 1.0 kHz







POWER DARLINGTON

NPN SILICON

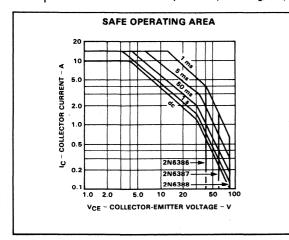
2N6386 2N6387 2N6388

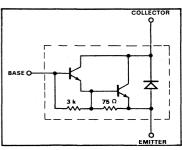
DESIGNED FOR USE IN POWER SWITCHING, HAMMER DRIVER AND SERIES AND SHUNT REGULATOR APPLICATIONS

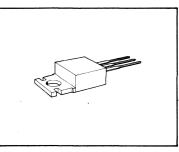
- 40 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- GOOD SECOND BREAKDOWN CAPABILITY
- HIGH DC CURRENT GAIN

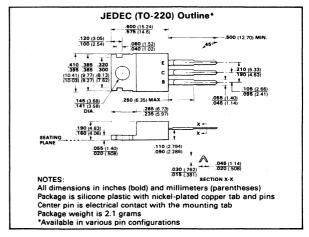
ABSOLUTE MAXIMUM RATINGS

Maximum	Voltages and Currents	2N6386	2N6387	2N6388
V_{CE}	Collector to Emitter Voltage	40 V	60 V	80 V
VCB	Collector to Base Voltage	40 V	60 V	80 V
VEB	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
lc	Continuous Collector Current	10 A	10 A	10 A
ľĊ	Peak Collector Current	15 A	15 A	15 A
IB	Continuous Base Current	0.25 A	0.25 A	0.25 A


PD Total Dissipation @ 25°C Case Temperature
Derate Linearly from 25°C


Maximum Temperatures


T_J,T_{St0} Storage and Operation Junction Temperatures


Thermal Characteristics

R_{ØJC} Thermal Resistance, Junction to Case T_P Maximum Pin Temperature (Soldering, 5 s)

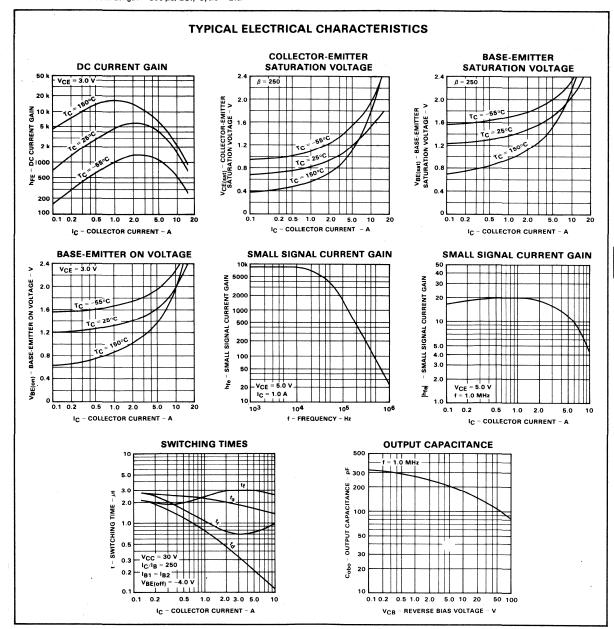
40 W

0.32 W/°C

3.1 °C/W 235°C

-65°C to +150°C

FAIRCHILD • 2N6386 • 2N6387 • 2N6388


		2N6	386	2N6	387	2N6	388		
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX.	UNITS	TEST CONDITIONS
F CHARACT	ERISTICS								
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		, V	I _C = 200 mA, I _B = 0
V _{CER(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		V	I _C = 200 mA, R _{BE} = 100 Ω
V _{CEV(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		٧	I _C = 200 mA, V _{BE(off)} =-1.
V _F	Parallel Diode Forward Voltage Drop		4.0		4.0		4.0	V V	I _C = -8.0 A I _C = -10 A
			1.0					mA	V _{CF} = 40 V, I _B = 0
					1.0			mA	V _{CE} = 60 V, I _B = 0
		1					1.0	mA	V _{CF} = 80 V, I _B = 0
ICEO	Collector Cutoff Current		10					mA	V _{CE} = 40 V, I _B = 0, T _C = 150°C
					10			· mA	$V_{CE} = 60 \text{ V, } I_{B} = 0,$ $T_{C} = 150^{\circ}\text{C}$
							10	mA	V _{CE} = 80 V, I _B = 0, T _C = 150°C
			0.3					mA	$V_{CE} = 40^{\circ}V, V_{BE} = -1.5 V$
					0.3			mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V}$
							0.3	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V}$
ICEV	Collector Cutoff Current		3.0					mA	$V_{CE} = 40 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$
					3.0			mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V}, T_{C} = 150 ^{\circ}\text{C}$
							3.0	mA	$V_{CE} = 80 \text{ V, } V_{BE} = -1.5 \text{ V,}$ $T_{C} = 150^{\circ}\text{C}$
^I EBO	Emitter Cutoff Current		5.0		5.0		5.0	mA .	$V_{EB} = 5.0 \text{ V, } I_{C} = 0$
CHARACTE	ERISTICS								
		1 k	20 k				T		I _C = 3.0 A, V _{CF} = 3.0 V
h _{FE}	DC Current Gain (Note 1)		21	1 k	20 k	1 k	20 k		$I_C = 5.0 \text{ A}, V_C = 3.0 \text{ V}$
···FE	The first of Garages.	100							I _C = 8.0 A, V _{CE} = 3.0 V
	***			100		100			I _C = 10 A, V _{CE} = 3.0 V
,			2.0					V	I _C = 3.0 A, I _B = 6.0 mA
V _{CE(sat)}	Collector Emitter Saturation				2.0		2.0	V	I _C = 5.0 A, I _B = 10 mA
	Voltage (Note 1)		3.0				1	V	I _C = 8.0 A, I _B = 80 mA
	1.5	1			3.0		3.0	V	I _C = 10 A, I _B = 100 mA
			2.8	***************************************				V	I _C = 3.0 A, V _{CF} = 3.0 V
V _{BE(on)}	Base-Emitter "On" Voltage				2.8		2.8	V	I _C = 5.0 A, V _{CE} = 3.0 V
BE(OII)	(Note 1)		4.5					V	I _C = 8.0 A, V _{CE} = 3.0 V
					4.5		4.5	V	I _C = 10 A, V _{CE} = 3.0 V
COND BREA	AKDOWN				<u> </u>			· · · · · · · · · · · · · · · · · · ·	
	Second Breakdown Collector					T			
I _{S/b}	Current with Base Forward Biased	1.2		1.2	,	1.2		Α	V _{CE} = 35 V t = 1.0 s (non repetitive)
E _{S/b}	Second Breakdown Energy with Base Reversed Biased	120		120		120		mj	I _C = 4.5 A, V _{BE(off)} = -1.5 L = 12 mH

FAIRCHILD • 2N6386 • 2N6387 • 2N6388

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted) (Cont'd)

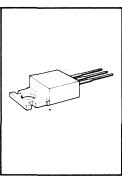
SYMBOL	CHARACTERICTIC	2N6	386	2N6	387	2N6	388	LIAUTO	TEGT CONTINUE
STIVIBUL	CHARACTERISTIC	MIN.	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
YNAMIC CHA	ARACTERISTICS	**							
C _{ob}	Output Capacitance		200		200		200	pF	V _{CB} = 10 V, I _E = 0, f = 0.1 MHz
h _{fe}	Magnitude of Common Emitter Small Signal Short Circuit Forward Current Transfer Ratio	20		20		20			I _C = 1.0 A, V _{CE} = 5.0 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	1 k		1 k		1 k			$I_C = 1.0 \text{ A, V}_{CE} = 5.0 \text{ V,}$ f = 1.0 kHz

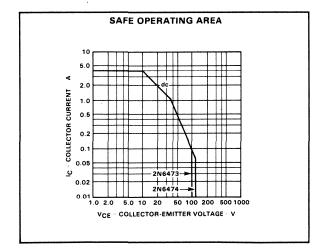
NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

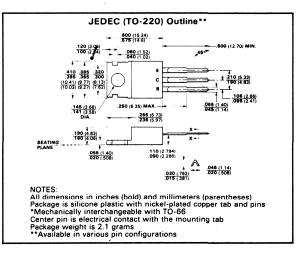
NPN SILICON

2N6473 2N6474

GENERAL PURPOSE MEDIUM POWER TRANSISTORS FOR SWITCHING AND AMPLIFIER APPLICATIONS

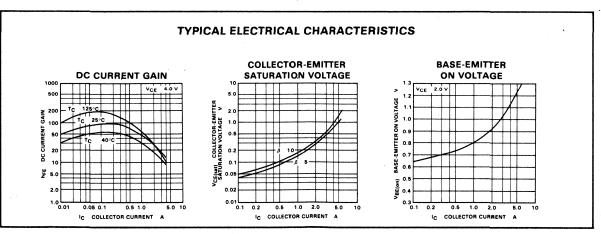

- 40 W DISSIPATION AT 25°C CASE
- 4 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- LOW SATURATION VOLTAGES
- COMPLEMENTS TO 2N6475, 2N6476


ABSOLUTE MAXIMUM RATINGS (Note 1)


Maximum Voltages and Currents

V _{CEO}	Collector to Emitter Voltage
V _{CBO}	Collector to Base Voltage
VEBO	Emitter to Base Voltage
I _C	Continuous Collector Current (≤106°C Case)
I _B	Continuous Base Current (≤130°C Case)
Maximum Po	ower Dissipation
PD	Total Dissipation @ 25°C Case Temperature
J	Derate Linearly from 25°C
Maximum To	emperatures
T_J, T_stq	Storage and Operation Junction Temperatures
Thermal Cha	racteristics
$R_{\theta JC}$	Thermal Resistance, Junction to Case
TP	Maximum Pin Temperature (Soldering, 10 s)

2N6473	2N6474
100 V	120 V
110 V	130 V
5.0 V	5.0 V
4.0 A	4.0 A
2.0 A	2.0 A
	40 W 0.32 W/°C
-65°C	to +150°C
	3.125°C/W 235°C


FAIRCHILD • 2N6473 • 2N6474

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

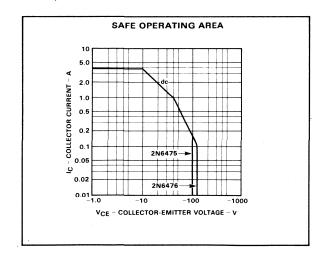
SYMBOL	CHARACTERISTIC	2N6	6473	2N6474		UNIT	TEST CONDITIONS	
STINIBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	1231 CONDITIONS	
FF CHARAÇ	TERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	100		120		v	I _C = 100 mA, I _B = 0	
V _{CER(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	110		130		V	I _C = 100 mA, R _{BE} = 100 Ω	
ICEO	Collector Cutoff Current		1.0		1.0	mA mA	V _{CE} = 50 V, I _B = 0 V _{CE} = 60 V, I _B = 0	
CEX	Collector Cutoff Current	•	0.1 2.0		0.1	mA mA mA	V _{CE} = 100 V, V _{BE} = -1.5 V V _{CE} = 120 V, V _{BE} = -1.5 V V _{CE} = 100 V, V _{BE} = -1.5 V, T _C = 100°C V _{CE} = 120 V, V _{BE} = -1.5 V, T _C = 100°C	
ICER	Collector Cutoff Current		2.0		2.0	mA mA mA	$V_{CE} = 100 \text{ V}, R_{BE} = 100 \Omega$ $V_{CE} = 120 \text{ V}, R_{BE} = 100 \Omega$ $V_{CE} = 100 \text{ V}, R_{BE} = 100 \Omega$ $T_{C} = 100^{\circ}\text{C}$ $V_{CE} = 120 \text{ V}, R_{BE} = 100 \Omega$ $T_{C} = 100^{\circ}\text{C}$	
I _{EBO}	Emitter Cutoff Current		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0	
N CHARACT	ERISTICS		<u> </u>					
h _{FE}	DC Current Gain (Note 1)	15 2.0	150	15 2.0	150		I _C = 1.5 A, V _{CE} = 4.0 V I _C = 4.0 A, V _{CE} = 2.5 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.2 2.5		1.2 2.5	V V	I _C = 1.5 A, I _B = 0.15 A I _C = 4.0 A, I _B = 2.0 A	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		2,0 3.5		2.0 3.5	V	I _C = 1.5 A, V _{CE} = 4.0 V I _C = 4.0 A, V _{CE} = 2.5 V	
YNAMIC CH	ARACTERISTICS							
f⊤	Current-Gain- Bandwidth Product	4.0		4.0		MHz	I _C = 0.5 A, V _{CE} = 4.0 V	
c _{ob}	Output Capacitance		250		250	pF	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz	
			-	4	4	+	.	

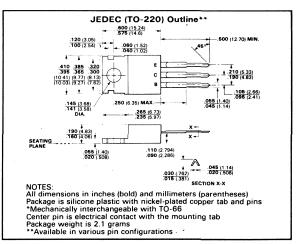
fŋ	Т	Current-Gain- Bandwidth Product	4.0		4.0		MHz	I _C = 0.5 A, V _{CE} = 4.0 V
С	ob	Output Capacitance		250		250	pF	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz
h	fe	Magnitude of Common Emitter Small Signal Current Gain	4.0		4.0			I _C = 0.5 A, V _{CE} = 4.0 V, f = 1.0 MHz
h.	fe	Small Signal Current Gain	20		20			I _C = 0.5 A, V _{CE} = 4.0 V, f = 50 kHz

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

PNP SILCON

2N6475 2N6476


GENERAL PURPOSE MEDIUM-POWER TRANSISTORS FOR SWITCHING AND AMPLIFIER APPLICATIONS


- 40 W DISSIPATION AT 25°C CASE
- 4.0 A MAZIMUM CONTINUOUS COLLECTOR CURRENT
- LOW SATURATION VOLTAGES

COMPLEMENT TO 2N6473, 2N6474

ABSOLUTE MAXIMUM RATINGS

Maximum Vol	tages and Currents	2N6475	2N6476	
V_{CE}	Collector to Emitter Voltage	-100 V	−120 V	
V _{CB}	Collector to Base Voltage	-110 V	-130 V	
VEB	Emitter to Base Voltage	-5.0 V	-5.0 V	
lc	Continuous Collector Current (≤ 106°C Case)	4.0 A	4.0 A	
ΙΒ̈́	Continuous Base Current (≤ 130°C Case)	2.0 A	2.0 A	
Maximum Pov	ver Dissipation			
PD	Total Dissipation @ 25°C Case Temperature		40 W	1667
۳.	Derate Linearly from 25°C		0.32 W/°C	A CONTRACTOR OF THE PROPERTY O
Maximum Ten	nperatures			1
T_J, T_stg	Storage and Operation Junction Temperatures	-65°0	C to +150°C	
Thermal Chara	cteristics			
$R_{\theta JC}$	Thermal Resistance, Junction to Case		3.125°C/W	
TP	Maximum Pin Temperature (Soldering, 10 s)		235°C	<u> </u>

FAIRCHILD • 2N6475 • 2N6476

	125°C Case Temperature	

	OLIADA OTERIOTIOS	2N6	3475	2N6	6476		TEST CONDITIONS	
SYMBOL	CHARACTERISTICS	MIN	MAX	MIN	MAX	UNIT		
F CHARACT	ERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-100		-120		V	I _C = 100 mA, I _B = 0	
V _{CER(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-110		-130		V	$I_{C} = 100 \text{ mA}, R_{BE} = 100 \Omega$	
1	Collector Cutoff Current		1.0	3.15.15.1		mA	V _{CE} = -50 V, I _B = 0	
CEO	Conector Cuton Current			1 1 1 1 1	,1.0	mA	$V_{CE} = -60 \text{ V}, I_B = 0$	
			0.1			mA	V _{CE} = -100 V, V _{BE} = 1.5 V	
	·				0.1	mA	$V_{CE} = -120 \text{ V}, V_{BE} = 1.5 \text{ V}$	
CEX	Collector Cutoff Current		2.0			mA	$V_{CE} = -100 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 100 ^{\circ}\text{C}$	
			alle egy		2.0	mA	$V_{CE} = -120 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 100^{\circ}\text{C}$	
·			0.1			mA	$V_{CE} = -100 \text{ V}, R_{BE} = 100 \Omega$	
					0.1	mA	$V_{CE} = -120 \text{ V}, R_{BE} = 100 \Omega$	
CER	Collector Cutoff Current		2.0			mA	$V_{CE} = -100 \text{ V}, R_{BE} = 100 \Omega,$ $T_{C} = 100 ^{\circ}\text{C}$	
					2.0	mA	$V_{CE} = -120 \text{ V}, R_{BE} = 100 \Omega,$ $T_{C} = 100^{\circ}\text{C}$	
I _{EBO}	Emitter Cutoff Current	-	1.0		1.0	mA	$V_{EB} = -5.0 \text{ V}, I_{C} = 0$	
N CHARACTI	ERISTICS		,					
h	DC Current Gain (Note 1)	15	150	15	150		I _C = 1.5 A, V _{CE} = -4.0 V	
h _{FE}	DC Current Gain (Note 1)	2.0		2.0			$I_C = 4.0 \text{ A}, V_{CE} = -2.5 \text{ V}$	
	Collector-Émitter Saturation		-1.2		-1.2	V	I _C = 1.5 A, I _B = 0.15 A	
V _{CE(sat)}	14-4 (1)-4-4)	1	2 -	i	1 2-		- 404 204	

VCE(sat)	Voltage (Note 1)		-2.5		-2.5	V	$I_C = 4.0 \text{ A}, I_B = 2.0 \text{ A}$
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-2.0 -3.5		-2.0 -3.5	V V	I _C = 1.5 A, V _{CE} = -4.0 V I _C = 4.0 A, V _{CE} = -2.5 V
DYNAMIC CH	IARACTERISTICS						
f _T	ARACTERISTICS Current Gain Bandwidth Product	10		10		MHz	I _C = 0.5 A, V _{CE} = -4.0 V

10

20

10

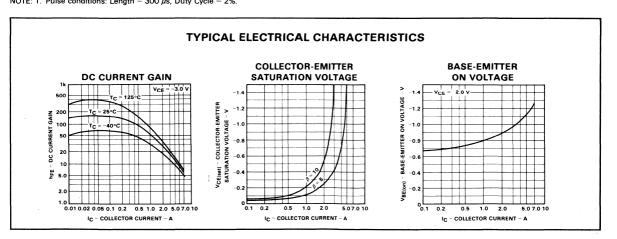
20

 $I_{\hbox{\scriptsize C}}=$ 0.5 A, $V_{\hbox{\scriptsize CE}}=-4.0$ V,

 I_C = 0.5 A, V_{CE} = -4.0 V,

f = 1.0 MHz

f = 1.0 kHz


Small Signal Current Gain NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

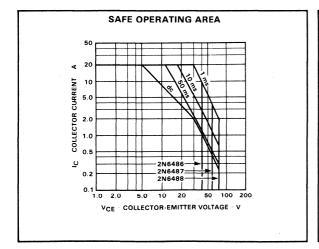
h_{fe}

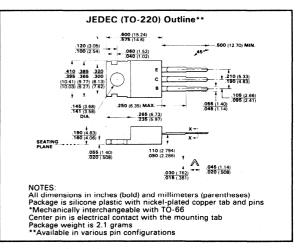
h_{fe}

Magnitude of Common Emitter

Small Signal Current Gain

NPN SILICON


2N6486 2N6487 2N6488


GENERAL PURPOSE TRANSISTORS DESIGNED FOR MEDIUM POWER SWITCHING AND AMPLIFIER APPLICATIONS

- 75 W DISSIPATION AT 25°C CASE
- 15 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT TO 2N6489, 2N6490, 2N6491

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum V	oltages and Currents	2N6486	2N6487
VCEO	Collector to Emitter Voltage	40 V	60 V
VCBO	Collector to Base Voltage	50 V	70 V
VEBO	Emitter to Base Voltage	5.0 V	5.0 V
l _C	Continuous Collector Current	15 A	15 A
I _B	Continuous Base Current	5.0 A	5.0 A
Maximum P	Power Dissipation		
PD	Total Dissipation @ 25°C Case Temperature		
	Derate Linearly from 25°C		
Maximum 1	Temperatures		
T_J, T_stg	Storage and Operation Junction Temperatures	i	65
Thermal Ch			
R_{θ} JC	Thermal Resistance, Junction to Case		
Τρο	Maximum Pin Temperature (Soldering, 10 s)		
•	· ·		

2N6488

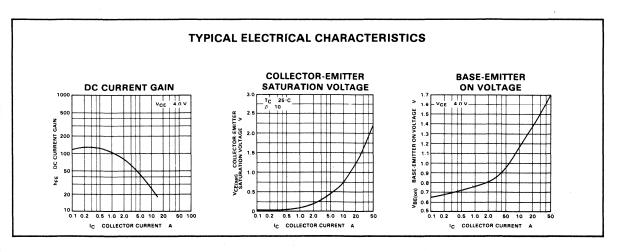
80 V

90 V

5.0 V

15 A

5.0 A 75 W 0.6 W/°C


-65°C to +150°C

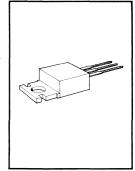
1.67°C/W 235°C

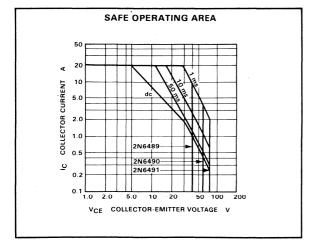
FAIRCHILD • 2N6486 • 2N6487 • 2N6488

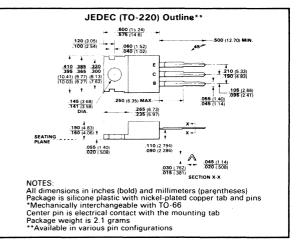
SYMBOL	CHARACTERISTIC	2N6	486	2N6487		2N6488		UNIT	TEST CONDITIONS	
STWIBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARAC	TERISTICS									
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		V	I _C = 200 mA, I _B = 0	
V _{CER(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	45		65		85	-	V	I _C = 200 mA, R _{BE} = 100 Ω	
V _{CEX(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	50		70		90		٧	I _C = 200 mA, V _{BE(off)} = -1.5 V	
			1.0					mA	V _{CE} = 20 V, I _B = 0	
CEO	Collector Cutoff Current				1.0			mA	V _{CE} = 30 V, I _B = 0	
							1.0	mA	V _{CE} = 40 V, I _B = 0	
			0.5					mA	V _{CE} = 45 V, V _{BE} = -1.5 V	
		ĺ		ĺ	0.5	ŀ		mA	V _{CE} = 65 V, V _{BE} = -1.5 V	
		1					0.5	mA	V _{CE} = 85 V, V _{BE} = -1.5 V	
CEX	Collector Cutoff Current	-	5.0					mA	$V_{CE} = 40 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
			-		5.0			mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
							5.0	mA	$V_{CE} = 80 \text{ V}, V_{BE} = -1.5 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	
			0.5					mA	V _{CE} = 35 V, R _{BE} = 100 Ω	
I _{CER}	Collector Cutoff Current				0.5			mA	$V_{CE} = 55 \text{ V, R}_{BE} = 100 \Omega$	
							0.5	mA	$V_{CE} = 75 \text{ V, R}_{BE} = 100 \Omega$	
¹ ЕВО	Emitter Cutoff Current		1.0		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0	
N CHARACT	ERISTICS								<u> </u>	
		20	150	20	150	20	150		I _C = 5.0 A, V _{CE} = 4.0 V	
hFE	DC Current Gain (Note 1)	5.0		5.0		5.0			I _C = 15 A, V _{CE} = 4.0 V	
	Collector-Emitter		1.3		1.3		1.3	٧	I _C = 5.0 A, I _B = 0.5 A	
$V_{CE(sat)}$	Saturation Voltage (Note 1)		3.5		3.5		3.5	V	I _C = 15 A, I _B = 5.0 A	
.,	Base-Emitter "On"		1.3		1.3	T -	1.3	V	I _C = 5.0 A, V _{CE} = 4.0 V	
V _{BE(on)}	Voltage (Note 1)		3.5		3.5		3.5	V	I _C = 15 A, V _{CE} = 4.0 V	
YNAMIC CH.	ARACTERISTICS						-			
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	5.0		5.0		5.0			I _C = 1.0 A, V _{CE} = 4.0 V f = 1.0 MHz	
h _{fe}	Small Signal Current Gain	25		25		25			I _C = 1.0 A, V _{CE} = 4.0 V f = 1.0 kHz	

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

PNP SILICON

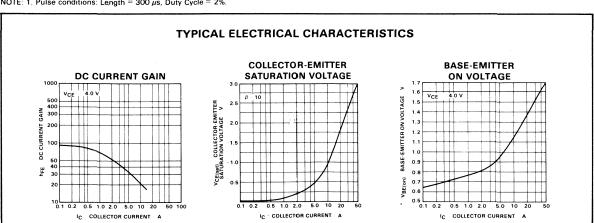

2N6489 2N6490 2N6491


GENERAL PURPOSE TRANSISTORS DESIGNED FOR MEDIUM POWER SWITCHING AND AMPLIFIER APPLICATIONS


- 75 W DISSIPATION AT 25°C CASE
- 15 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT TO 2N6486, 2N6487, 2N6488

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum \	/oltages and Currents	2N6489	2N6490	2N6491	
v_{CEO}	Collector to Emitter Voltage	-40 V	-60 V	-80 V	
VCBO	Collector to Base Voltage	-50 V	−70 V	-90 V	
VEBO	Emitter to Base Voltage	-5.0 V	-5.0 V	~5.0 V	
1 _C	Continuous Collector Current	15 A	15 A	15 A	1
I _B	Continuous Base Current	5.0 A	5.0 A	5.0 A	
	Power Dissipation				
PD	Total Dissipation @ 25°C Case Temperature			75 W	6
J	Derate Linearly from 25°C			0.6 W/°C	State
Maximum 1	Temperatures				
T_J, T_{sta}	Storage and Operation Junction Temperatures		–65°C	C to +150°C	
	aracteristics				
$R_{\theta}JC$	Thermal Resistance, Junction to Case			1.67°C/W	
Τροσο	Maximum Pin Temperature (Soldering, 10 s)			235°C	
•					



FAIRCHILD • 2N6489 • 2N6490 • 2N6491

		2N6	489	2N6	490	2N6	491		TEST CONDITIONS
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
FF CHARAC	TERISTICS		-	-					the control of the co
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-40		-60		-80		V	I _C = 200 mA, I _B = 0
V _{CER(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-45	* .	-65		85		V	$I_{C} = 200 \text{ mA}, R_{BE} = 100 \Omega$
V _{CEX(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-50		-70		-90		V	I _C = 200 mA, V _{BE(off)} = -1.5 V
			1.0					mA	V _{CE} = -20 V, I _B = 0
^I CEO	Collector Cutoff Current				1.0		-	mA	$V_{CE} = -30 \text{ V, i}_{B} = 0$
020				1			1.0	mA	V _{CE} = -40 V, I _B = 0
			0.5			1		mA	V _{CE} = -45 V, V _{BE} = 1.5 V
					0.5		118,000	mA	V _{CE} = -65 V, V _{BE} = 1.5 V
							0.5	mA	V _{CE} = -85 V, V _{BE} = 1.5 V
ICEX	Collector Cutoff Current		5.0					mA	$V_{CE} = -40V, V_{BE} = 1.5V,$ $T_{C} = 150^{\circ}C$
					5.0			m/A	$V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
							5.0	mA	$V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
			0.5					mA	$V_{CE} = -35 \text{ V, R}_{BE} = 100 \Omega$
CER	Collector Cutoff Current	-			0.5			mA	$V_{CE} = -55 \text{ V}, R_{BE} = 100 \Omega$
OLIV							0.5	mA	$V_{CE} = -75 \text{ V}, R_{BE} = 100 \Omega$
I _{EBO}	Emitter Cutoff Current		1.0		1.0		1.0	mA	V _{EB} = -5.0 V, I _C = 0
ON CHARACT	ERISTICS								
	DO 0	20	150	20	150	20	150		I _C = 5.0 A, V _{CE} = -4.0 V
hEE	DC Current Gain (Note 1)	5.0		5.0		5.0			I _C = 15 A, V _{CE} = -4.0 V
	Collector-Emitter		-1.3		-1.3		-1.3	V	I _C = 5.0 A, I _B = 0.5 A
V _{CE(sat)}	Saturation Voltage (Note 1)		-3.5		-3.5		-3.5	V	I _C = 15 A, I _B = 5.0 A
	Base-Emitter "On"		-1.3	+	-1.3	-	-1.3	V	I _C = 5.0 A, V _{CE} = -4.0 V
V _{BE(on)}	Voltage (Note 1)		-3.5		-3.5		-3.5	V V	I _C = 15 A, V _{CE} = -4.0 V
OYNAMIC CH	ARACTERISTICS	1							
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	5.0		5.0		5.0			I _C = 1.0 A, V _{CE} = -4.0 V f = 1.0 MHz
h _{fo}	Small Signal Current Gain	25		25		25			I _C = 1.0 A, V _{CE} = -4.0 V f = 1.0 kHz

Small Signal Current Gain NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

h_{fe}

f = 1.0 kHz

NPN SILICON

2N6569

GENERAL PURPOSE POWER TRANSISTOR DESIGNED FOR LOW VOLTAGE AMPLIFIER AND POWER SWITCHING

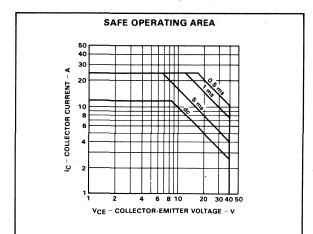
- 100 W DISSIPATION AT 25°C CASE
- 12 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- ALL PURPOSE REPLACEMENT FOR INDUSTRY STANDARD 2N3055
- COST EFFECTIVE
- METAL CAN RELIABILITY IN TO-3 PACKAGE

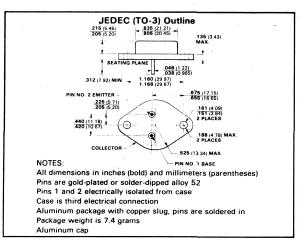
ABSOLUTE MAXIMUM RATINGS

Maximum Voltages and Currents

V_{CF}	Collector to Emitter Voltage	
VCB	Collector to Base Voltage	
VER	Emitter to Base Voltage	
lC	Continuous Collector Current	
ľč	Peak Collector Current	
ΙΒ̈́	Continuous Base Current	

Maximum Power Dissipation


P_{D}	Total Dissipation @ 25°C Case Temperature	100 W
_	Derate Linearly from 25°C	0.8 W/°C

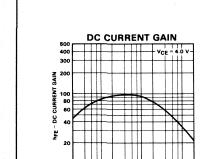

Maximum Temperatures

T _J , T _{stg}	Storage and Operating Junction Temperatures	-65°C to +200°C
0 0.9		

Thermal Characteristics

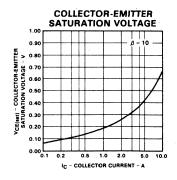
$R_{\theta JC}$	Thermal Resistance, Junction to Case	
TP	Maximum Pin Temperature (Soldering, 5 s)	

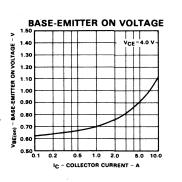
40 V 45 V 5 V 12 A 24 A 5 A


1.75°C/W 265°C

FAIRCHILD • 2N6569

FIFOTDIOAL	OUADAOTEDIOTIOS (S				
ELECTIBIL AL	CHARACTERISTICS (2	holi liace	Lemnerature	IIDIACC	Otherwice noted)


SYMBOL	CHARACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
F CHARACT	ERISTICS				
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		V	$I_C = 200 \text{ mA}, I_B = 0$
CEV	Collector Cutoff Current		1.0 10	mA	V _{CE} = 45 V, V _{BE} = -1.5 V V _{CE} = 45 V, V _{BE} = -1.5 V, T _C = 100°C
I _{EBO}	Emitter Cutoff Current		5.0	mA	V _{EB} = 5.0 V, I _C = 0
CHARACTE	RISTICS				
h _{FE}	DC Current Gain (Note 1)	15 5.0	200 100		I _C = 4.0 A, V _{CE} = 3.0 V I _C = 12 A, V _{CE} = 4.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.5 4.0	v	I _C = 4.0 A, I _B = 0.4 A I _C = 12 A, I _B = 2.4 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		2.0	V	I _C = 4.0 A, I _B = 0.4 A
COND BREA	KDOWN		North A		
I _{s/b}	Second Breakdown Collector Current with Base Forward Biased	2.5		A	t = 1.0 s (non-repetitive) V _{CE} = 40 V
NAMIC CHA	RACTERISTICS		-		
f _T	Current-Gain-Bandwidth Product	1.5	15	MHz	I _C = 1.0 A, V _{CE} = 4.0 V, f = 0.5 MHz
C _{ob}	Output Capacitance	75	750	pF	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz
VITCHING C	HARACTERISTICS AD			•	
^t d	Delay Time		0.4	μs	V _{CC} = 30 V, I _C = 2.0 A, I _{B1} = 0.2 A
t _r	Rise Time		1.5	μs	$t_p = 25 \mu\text{s}$, Duty Cycle $\leq 1.0\%$
t _s	Storage Time		5.0	μs	V _{CC} =30V, I _C =2.0A, I _{B1} =I _{B2} =0.2A
t _f	Fall Time		1.5	μs	t _D = 25 μs, Duty Cycle ≤ 1.0%


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

0.5 1.0

IC - COLLECTOR CURRENT - A

POWER DARLINGTON

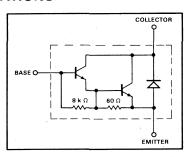
NPN SILICON

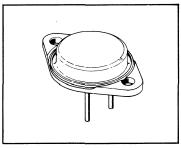
2N6576 2N6577

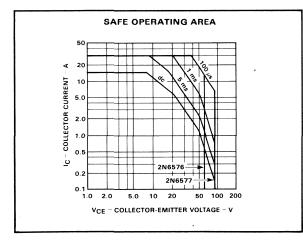
GENERAL PURPOSE DARLINGTON SUITABLE FOR POWER AMPLIFIER AND SERIES PASS REGULATOR APPLICATIONS

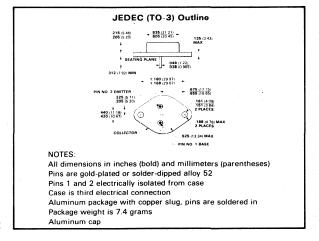
- 120 W DISSIPATION AT 25°C CASE
- 15 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- **COST EFFECTIVE REPLACEMENT FOR 2N3055 AND DRIVER**
- HIGH GAIN DARLINGTON PERFORMANCE
- REVERSE POLARITY DIODE PROTECTION

ABSOLUTE MAXIMUM RATINGS


Maximum \	oltages and Currents	2N6576	2N6577
v_{CE}	Collector to Emitter Voltage	60 V	90 V
V _{CB}	Collector to Base Voltage	60 V	90 V
V _{FB}	Emitter to Base Voltage	7 V	7 V
I _C	Continuous Collector Current	15 A	15 A
١č	Peak Collector Current	30 A	30 A
ΙΒ̈́	Continuous Base Current	.25 A	.25 A
Maximum F	Power Dissipation		
P_{D}	Total Dissipation @ 25°C Case Temperature	е	120 W
-	Derate Linearly from 25°C		.685 W/°C

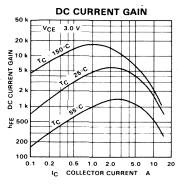

Maximum Temperatures

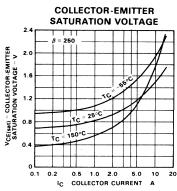

Storage and Operation Junction Temperatures -65°C to +200°C T_{J}, T_{sta}

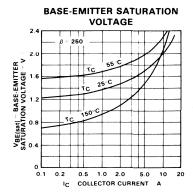

Thermal Characteristics

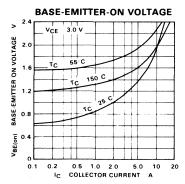
Thermal Resistance, Junction to Case $R_{\theta,JC}$ T_{P} Maximum Pin Temperature (Soldering, 5s)

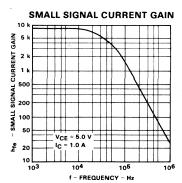
1.46°C/W

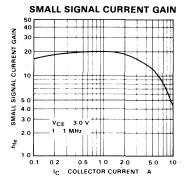

265°C

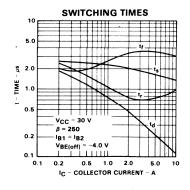

FAIRCHILD • 2N6576 • 2N6577

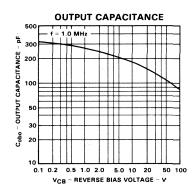

		2N6	3576	2N6577			
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARACT	ERISTICS						
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		90		V	I _C = 200 mA, I _B = 0
I _{CEO}	Collector Cutoff Current		1.0		1.0	mA	V _{CE} = 60 V, I _B = 0 V _{CE} = 90 V, I _B = 0
ICEV	Collector Cutoff Current		5.0		5.0	mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{ V}, \\ T_{C} = 175^{\circ}\text{C} \\ V_{CE} = 90 \text{ V}, V_{BE} = -1.5 \text{ V}, \\ T_{C} = 175^{\circ}\text{C}$
^I CER	Collector Cutoff Current		5.0		5.0	mA	V_{CE} = 60 V, R_{BE} = 10 kΩ, T_{C} = 150°C V_{CE} = 90 V, R_{BE} = 10 kΩ, T_{C} = 150°C
I _{СВО}	Collector Cutoff Current		0.5		0.5	mA	V _{CB} = 60 V, I _E = 0 V _{CB} = 90 V, I _E = 0
I _{EBO}	Emitter Cutoff Current		7.5		7.5	mA	V _{EB} = 7.0 V, I _C = 0
N CHARACTE	RISTICS						
hFE	DC Current Gain (Note 1)	100 500 2000 200	5000 20,000	100 500 2000 200	5000 20,000		I _C = 15 A, V _{CE} = 4.0 V I _C = 10 A, V _{CE} = 3.0 V I _C = 4.0 A, V _{CE} = 3.0 V I _C = 0.4 A, V _{CE} = 3.0 V
V _{CE(sat)}	Collector-Emitter Voltage (Note 1)		4.0 2.8		4.0 2.8	V	I _C = 15 A, I _B = 0.15 A I _C = 10 A, I _B = 0.1 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		4.5 3.5		4.5 3.5	V	I _C = 15 A, I _B = 0.15 A I _C = 10 A, I _B = 0.1 A
v _{EC}	Collector-Emitter Diode Voltage Drop		3.5		3.5	V	I _{EC} = 15 A
YNAMIC CHA	ARACTERISTICS						
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	10	200	10	200		$I_C = 3.0 \text{ A}, V_{CE} = 3.0 \text{ V},$ f = 1.0 MHz
VITCHING C	HARACTERISTICS AD						
^t d	Delay Time		0.15		0.15	μs	$V_{CC} = 30 \text{ V, I}_{C} = 10 \text{ A, I}_{B1} = 0.1 \text{ A}$
^t r	Rise Time		1.0		1.0	μs	$t_p = 300 \mu\text{s}$, Duty Cycle $\leq 2.0\%$
t _s	Storage Time		2.0		2.0	μs	V _{CC} = 30 V, I _C = 10 A,


11201011112		 	 		
t _d	Delay Time	0.15	0.15	μs	$V_{CC} = 30 \text{ V}, I_{C} = 10 \text{ A}, I_{B1} = 0.1 \text{ A}$
t _r	Rise Time	1.0	1.0	μs	$t_p = 300 \mu\text{s}$, Duty Cycle $\leq 2.0\%$
t _s	Storage Time	2.0	2.0	μs	$V_{CC} = 30 \text{ V, } I_{C} = 10 \text{ A,}$
t _f	Fall Time	7.0	7.0	μs	$t_{\rm p} = t_{\rm B2} = 0.1 \text{ A}$ $t_{\rm p} = 300 \mu\text{s}$, Duty Cycle $\leq 2.0\%$


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.







NPN SILICON

BC323

GENERAL PURPOSE POWER DEVICE FOR EUROPEAN MARKET

- 7.0 W DISSIPATION AT 25°C CASE
- 5.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 0.15 V_{CE(sat)} MAXIMUM @ 500 mA

ABSOLUTE MAXIMUM RATINGS (Note 1)

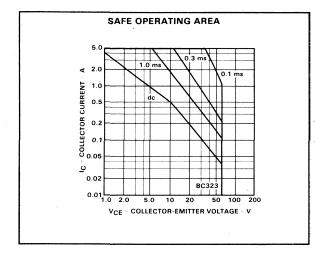
Maximum	Voltages	and Currents
---------	----------	--------------

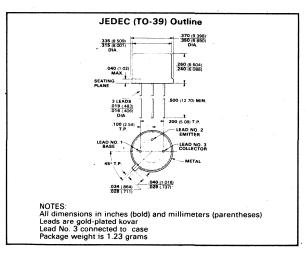
V_{CEO} Collector to Emitter Voltage
V_{CBO} Collector to Base Voltage
V_{EBO} Emitter to Base Voltage
I_C Continuous Collector Current

Maximum Power Dissipation

PD Total Dissipation @ 25°C Case Temperature

Derate Linearly from 25°C

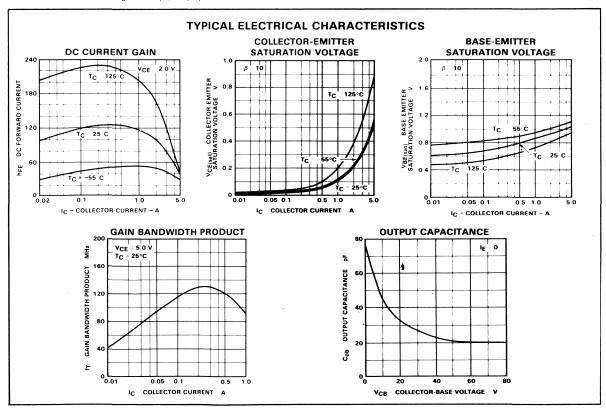

Maximum Temperatures


 T_{J} , T_{stg} Storage and Operation Junction Temperatures

Thermal Characteristics

 $R_{\theta JC}$ Thermal Resistance, Junction to Case

BC323 60 V 100 V 5.0 V 5.0 A 7.0 W 40 mW/°C -65°C to +200°C



FAIRCHILD • BC323

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

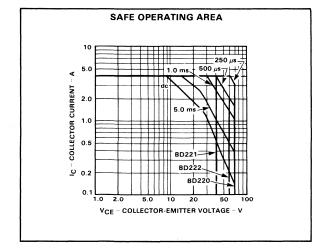
CVAADOL	CHARACTERISTIC	ВС	BC323		T
SYMBOL	CHARACTERISTIC		MIN MAX		TEST CONDITIONS
F CHARAC	TERISTICS		*************************************		
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		V	I _C = 50 mA, I _B = 0
V _{CES}	Collector-Emitter Breakdown Voltage	100		V	I _C = 1.0 mA, V _{BE} = 0
V _{EBO}	Emitter-Base Breakdown Voltage	5.0		V	I _E = 1.0 mA, I _C = 0
			0.1	mA	V _{CB} = 100 V, I _E = 0
I _{СВО}	Collector Cutoff Current		0.01	mA	V _{CB} = 40 V, I _E = 0
t.		0.35 TYP		μΑ	$V_{CB} = 40 \text{ V, I}_{E} = 0,$ $T_{C} = 75^{\circ}\text{C}$
I _{EBO}	Emitter Cutoff Current		0.01	mA	V _{EB} = 4.0 V, I _C = 0
N CHARACT	ERISTICS				
h	DC Current Gain (Note 1)	40	225		I _C = 50 mA, V _{CE} = 1.0 V
h _{FE}	DC Current Gain (Note 1)	50	250		I _C = 500 mA, V _{CE} = 1.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		0.15	V	I _C = 500 mA, I _B = 50 mA
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		0.9	V	I _C = 500 mA, I _B = 50 mA
/NAMIC CH	ARACTERISTICS				
c _{ob}	Output Capacitance		80	pF	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz
C _{eb}	Emitter-Transition Capacitance		500	pF	V _{EB} = 0.5 V, I _C = 0, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	5.0	TYP		I _C = 500 mA, V _{CE} = 5.0 V, f = 20 MHz

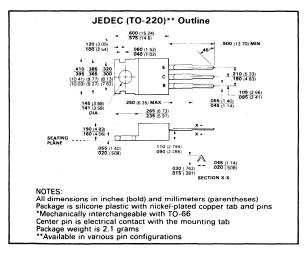
NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

NPN SILICON

GENERAL PURPOSE DEVICE FOR EUROPEAN MARKET

- 36 W DISSIPATION AT 25°C CASE
- 4.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS BD223, BD224, BD225

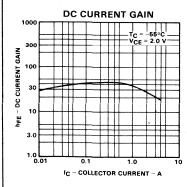

ARSOLO	I E WAXINUM	KATINGS	(Note I)

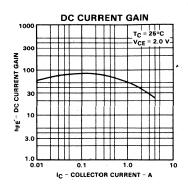

Maximum Vo	Itages and Currents
VCEO	Collector to Emitter Voltage
VCBO	Collector to Base Voltage
VEBO	Emitter to Base Voltage
IC .	Continuous Collector Current
ΙΒ	Continuous Base Current
Maximum Po	wer Dissipation
P_{D}	Total Dissipation @ 25°C Case Temperature
	Derate Linearly from 25°C
Maximum Te	mperatures
TJ, T _{stq}	Storage and Operation Junction Temperatures
Thermal Char	acteristics
$R_{ heta}JC$	Thermal Resistance, Junction to Case

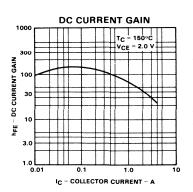
BD220	BD221	BD222
70 V	40 V	60 V
80 V	60 V	80 V
7.0 V	7.0 V	7.0 V
4.0 A	4.0 A	4.0 A
2.0 A	2.0 A	2.0 A
		36 W
	:	288 mW/°C

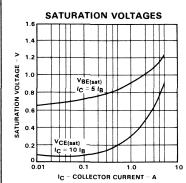
288 mW/°C --65°C to +150°C

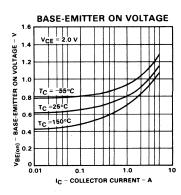
3.47°C/W

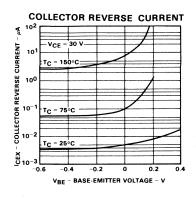

FAIRCHILD • BD220 • BD221 • BD222

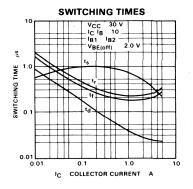

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


SYMBOL	CHARACTERISTIC	BD	220	BD	221	BD222		LINUT	TEST CONDITIONS	
SAMBOL	CHARACTERISTIC	MIN	мах	MIN	мах	MIN	MAX	UNIT	TEST CONDITIONS	
OFF CHARACT	FERISTICS									
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	70		40	-	60		V	I _C = 100 mA, I _B = 0	
			0.5				0.5	mA	V _{CE} = 65 V, V _{BE} = -1.5 V	
					2.0			mA -	V _{CE} = 35 V, V _{BE} = -1.5	
			10				10	mA .	V _{CE} = 80 V, V _{BE} = -1.5	
ICEV	Collector Cutoff Current				10			mA	$V_{CE} = 60 \text{ V}, V_{BE} = -1.5$	
			3.0				3.0	mA	$V_{CE} = 65 \text{ V}, V_{BE} = -1.5 \text{ T}_{C} = 150^{\circ} \text{ C}$	
		-			5.0		-	mA	$V_{CE} = 35 \text{ V,V}_{BE} = -1.5 \text{ V}$ $T_{C} = 150^{\circ}\text{C}$	
			0.5				0.5	mA	V _{CE} = 50 V, R _{BE} = 100	
			10					mA	V _{CE} = 75 V, R _{BE} = 100 s	
ICER	Collector Cutoff Current			1	10	1		mA '	V _{CE} = 50 V, R _{BE} = 100 S	
							10	mA	V _{CE} = 70 V, R _{BE} = 100 s	
			2.0				2.0	mA	$V_{CE} = 50 \text{ V, R}_{BE} = 100 \text{ S}$ $T_{C} = 150^{\circ}\text{C}$	
	5		1.0					mA	V _{EB} = 7.0 V, I _C = 0	
IEBO	Emitter Cutoff Current				1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0	
ON CHARACTE	ERISTICS		·		•					
	,	30	120						I _C = 0.5 A, V _{CE} = 4.0 V	
hFE	DC Current Gain (Note 1)			30	120	1			I _C = 1.0 A, V _{CE} = 4.0 V	
. –						20	80		I _C = 1.5 A, V _{CE} = 4.0 V	
	Callana Fasita Calana		1.0					V	I _C = 0.5 A, I _B = 0.05 A	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)				1.0			V	I _C = 1.0 A, I _B = 0.1 A	
	Voltage (Note 1)						1.0	V	I _C = 1.5 A, I _B = 0.15 A	
			1.1					V	I _C = 0.5 A, V _{CE} = 4.0 V	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)				1.3			V	I _C = 1.0 A, V _{CE} = 4.0 V	
							1.5	V	I _C = 1.5 A, V _{CE} = 4.0 V	
DYNAMIC CHA	ARACTERISTICS									
f _T	Current-Gain-Bandwidth Product	8.0		8.0		8.0		MHz	I _C = 0.2 A, V _{CE} = 4.0 V, f = 0.1 MHz	
SWITCHING CH										
									I _C = 0.5 A, V _{CC} = 30 V,	
ton	Turn On Time		0.5					μς	I _{B1} = 50 mA	
+	Turn Off Time		15						I _C = 0.5 A, V _{CC} = 30 V,	
^t off	Turn Oil Time		15					μs	I _{B1} = I _{B2} = 50 mA	
ton	Turn On Time				0.5			μς	I _C = 1.0 A, V _{CC} = 30 V, I _{B1} = 100 mA	
toff	Turn Off Time				15			μs	I _C = 1.0 A, V _{CC} = 30 V, I _{B1} = I _{B2} = 100 mA	
^t on	Turn On Time						0.5	μs	I _C = 1.5 A, V _{CC} = 30 V, I _{B1} = 150 mA	
toff	Turn Off Time	:	·				15	μs	I _C = 1.5 A, V _{CC} = 30 V, I _{B1} = I _{B2} = 150 mA	


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


FAIRCHILD • BD220 • BD221 • BD222

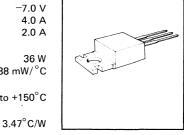


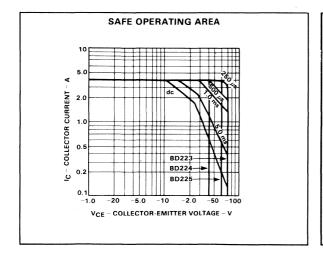


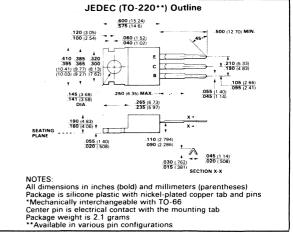
PNP SILICON

BD223 BD224 BD225

GENERAL PURPOSE DEVICE FOR EUROPEAN MARKET

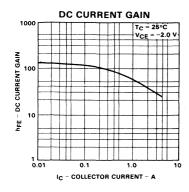

- 36 W DISSIPATION AT 25°C CASE
- 4.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENTS BD220, BD221, BD222

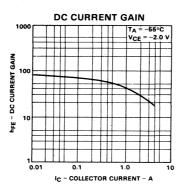

ABSOLUTE MAXIMUM RATINGS (Note 1)

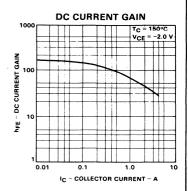

Maximum Vol	tages and Currents	BD223	BD224	BD225	
V_{CEO}	Collector to Emitter Voltage	−70 V	−40 V	60 V	
VCBO	Collector to Base Voltage	-80 V	−60 V	-80 V	
VEBO	Emitter to Base Voltage	-7.0 V	−7.0 V	-7.0 V	1
lC	Continuous Collector Current	4.0 A	4.0 A	4.0 A	
I _B	Continuous Base Current	2.0 A	2.0 A	2.0 A	1
Maximum Pov	ver Dissipation	•			
P_{D}	Total Dissipation @ 25°C Case Temp	erature		36 W	06
	Derate Linearly from 25°C	2	.88 mW/°C		
Maximum Ten	nperatures				
T _J , T _{stg}	Storage and Operation Junction Tem	-65°C	to +150°C		
					1

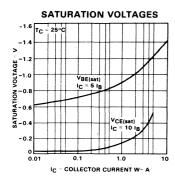
Thermal Characteristics

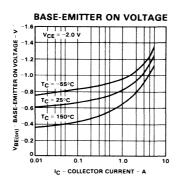
 $R_{ heta JC}$ Thermal Resistance, Junction to Case

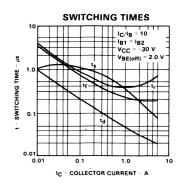


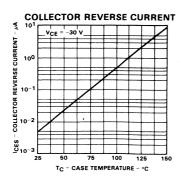

FAIRCHILD • BD223 • BD224 • BD225

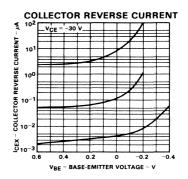

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


SYMBOL	CHARACTERISTIC	BD	223	BD	224	BD	225	UNIT	TEST CONDITIONS
O T WIBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARAC	TERISTICS								
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-70		-40		-60		V	I _C = 100 mA, I _B = 0
			0.5				0.5	mA	V _{CE} = -65 V, V _{BE} = 1.5 V
					2.0			mA	V _{CE} = −35 V, V _{BE} = 1.5 V
			10				10	mA	$V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V}$
^I CEV	Collector Cutoff Current				10			mA	$V_{CE} = -60 \text{ V}, V_{BE} = 1.5 \text{ V}$
CEV	Garage Garage		3.0				3.0	mA	$V_{CE} = -65 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{C}$
					5.0			mA	$V_{CE} = -35 \text{ V}, V_{BE} = 1.5 \text{ V},$ $T_{C} = 150^{\circ} \text{ C}$
			0.5				0.5	mA	$V_{CE} = -50 \text{ V}, R_{BE} = 100 \Omega$
			10					mA	$V_{CE} = -75 \text{ V}, R_{BE} = 100 \Omega$
loss	Collegtor Cutoff Course	1			10			mA	$V_{CE} = -50 \text{ V}, R_{BE} = 100 \Omega$
CER	Collector Cutoff Current						10	mA	$V_{CE} = -70 \text{ V}, R_{BE} = 100 \Omega$
			2.0				2.0	mA	$V_{CE} = -50 \text{ V}, R_{BE} = 100 \Omega,$ $T_{C} = 150^{\circ} \text{C}$
I _{EBO}	Emitter Cutoff Current		1.0					mA	V _{EB} = -7.0 V, I _C = 0
IEBO	Emitter Cutoff Current				1.0		1.0	mA	V _{EB} = -5.0 V, I _C = 0
N CHARACT	ERISTICS								
		30	120						I _C = 0.5 A, V _{CE} = -4.0 V
hFE	DC Current Gain (Note 1)	1		30	120				$I_C = 1.0 A$, $V_{CE} = -4.0 V$
						20	80		$I_C = 1.5 \text{ A}, V_{CE} = -4.0 \text{ V}$
			-1.0					V	IC = 0.5 A, IB = 50 mA
V _{CE(sat)}	Collector-Emitter Saturation	1		1	-1.0			v	I _C = 1.0 A, I _B = 100 mA
	Voltage (Note 1)						-1.0	V	I _C = 1.5 A, I _B = 150 mA
			-1.1		-			V	I _C = 0.5 A, V _{CF} = -4.0 V
V _{BE(on)}	Base-Emitter "On" Voltage				-1.3			V	$I_C = 1.0 \text{ A}, V_{CF} = -4.0 \text{ V}$
	(Note 1)						-1.5	V	I _C = 1.5 A, V _{CE} = -4.0 V
YNAMIC CH	ARACTERISTICS								
fT	Current-Gain-Bandwidth Product	0.8		0.8		8.0		MHz	$I_C = 0.2 \text{ A}, V_{CE} = -4.0 \text{ V}, f = 0.1 \text{ MH}$
WITCHING C	CHARACTERISTICS								
^t on	Turn On Time		5.0					μs	I _C = 0.5 A, V _{CC} = -30 V, I _{B1} = 50 mA
t _{off}	Turn Off Time		15					μs	I _C = 0.5 A, V _{CC} = -30 V,
V									I _{B1} = I _{B2} = 50 mA
ton	Turn On Time				5.0			μs	I _C = 1.0 A, V _{CC} = -30 V, I _{B1} = 100 mA
			 	 	 	† – –	 	 	I _C = 1.0 A, V _{CC} = -30 V,
^t off	Turn Off Time		1		15			μs	I _{B1} = I _{B2} = 100 mA
^t on	Turn On Time				-		5.0	μѕ	I _C = 1.5 A, V _{CC} = -30 V, I _{B1} = 150 mA
toff	Turn Off Time						15	μs	I _C = 1.5 A, V _{CC} = -30 V,
	i	1	1	1	i	1	1	1	I _{B1} = I _{B2} = 150 mA


FAIRCHILD • BD223 • BD224 • BD225







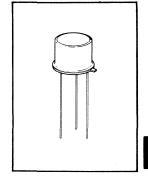
NPN SILICON

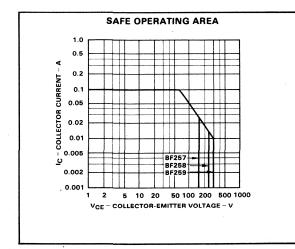
BF257 BF258 BF259

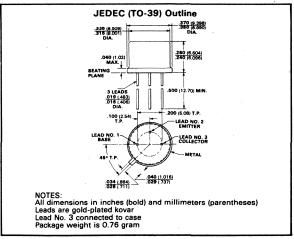
DESIGNED AS HIGH VOLTAGE VIDEO DRIVERS

- 7.0 W DISSIPATION AT 25°C CASE
- 100 mA MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 300 V V_{CEO} MINIMUM (BF259)

ARSOLUT	E MAXIMUM	RATINGS	(Note 1)


Maximum Vo	oltages and Currents	BF257	BF258	BF259
V_{CEO}	Collector to Emitter Voltage	160 V	250 V	300 V
VCBO	Collector to Base Voltage	160 V	250 V	300 V
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
IC	Continuous Collector Current	100 mA	100 mA	100 mA
Maximum Po	wer Dissipation			
P_{D}	Total Dissipation @ 25°C Case Temp	perature		7.0 W
_	Derate Linearly from 25°C			40 mW/°C

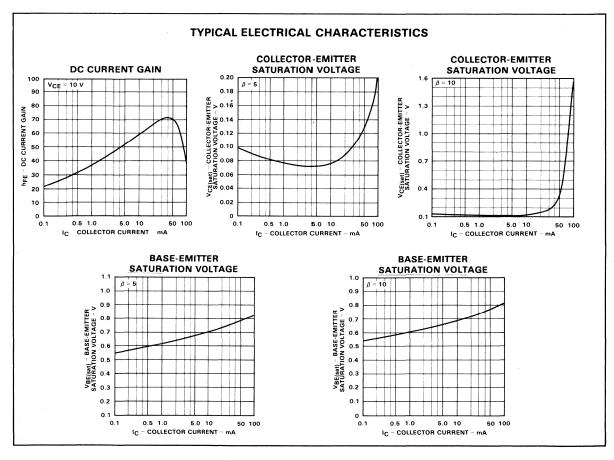

Maximum Temperatures


T_{.I}, T_{stq} Storage and Operation Junction Temperatures

Thermal Characteristics

 $R_{ heta JC}$ Thermal Resistance, Junction to Case

-65°C to +200°C


25°C/W

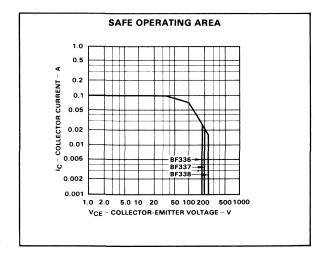
FAIRCHILD • BF257 • BF258 • BF259

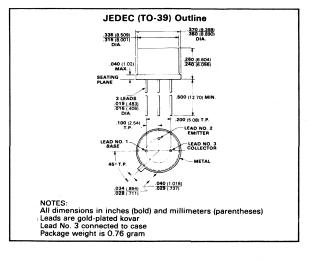
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	BF257		BF258		BF259		UNIT	TEST CONDITIONS
STWBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNII	TEST CONDITIONS
OFF CHARAC	TERISTICS								
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	160		250		300		V	I _C = 10 mA, I _B = 0
V _{CBO}	Collector-Base Breakdown Voltage	160		250		300		٧	I _C = 0.1 mA, I _E = 0
V _{EBO}	Emitter-Base Breakdown Voltage	5.0		5.0		5.0		٧	I _E = 0.1 mA, I _C = 0
^I СВО	Collector Cutoff Current		50		50		50	nA nA nA	V _{CB} = 100 V, I _E = 0 V _{CB} = 200 V, I _E = 0 V _{CB} = 250 V, I _E = 0
ON CHARACT	ERISTICS								
hFE	DC Current Gain (Note 1)	25		25		25			$I_C = 30 \text{ mA}, V_{CE} = 10 \text{ V}$
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		1.0		1.0		1.0	٧	I _C = 30 mA, I _B = 6.0 mA
DYNAMIC CH.	ARACTERISTICS								
fT	Current-Gain-Bandwidth Product	75	TYP	75	ΓΥΡ	75 TYP		MHz	$I_C = 15 \text{ mA}, V_{CE} = 10 \text{ V}, f = 10 \text{ M}$
C _{cb}	Collector-Base Capacitance	3.5	TYP	3.0	TYP	2.5 TYP			V _{CB} = 30 V, I _E = 0, f = 1.0 MHz

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

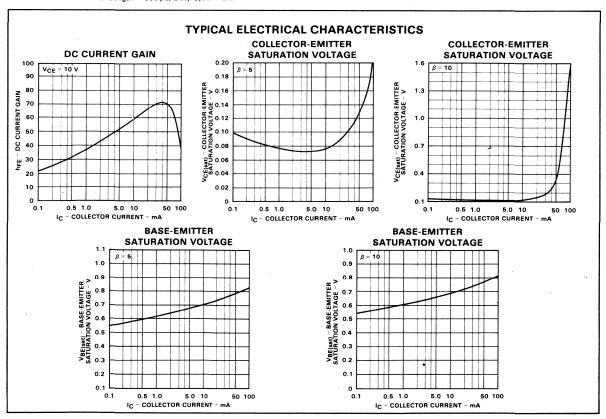
NPN SILICON




DESIGNED AS HIGH VOLTAGE VIDEO DRIVERS

- 1.0 W DISSIPATION AT 25°C CASE
- 100 mA MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 225 V V_{CEO} MINIMUM BF338

ABSOLUTE MAXIMUM RATINGS (Note 1)


ABSOLUTE MA	AIMOM RATINGS (Note 1)				
Maximum Vol	tages and Currents	BF336	BF337	BF338	
VCEO	Collector to Emitter Voltage	180 V	200 V	225 V	
VCBO	Collector to Base Voltage	185 V	250 V	300 V	
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V	
IC	Continuous Collector Current	100 mA	100 mA	100 mA	1 6 5 1
Maximum Pov	ver Dissipation				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
P_{D}	Total Dissipation @ 25°C Case Tem	perature		1.0 W 50 mW/°C	
	Derate Linearly from 25°C			50 mw/ C	
Maximum Ten	nperatures				
T _J , T _{stg}	Storage and Operation Junction Ter	mperatures	-65°	C to +200°C	
Thermal Chara	acteristics				ii J
$R_{ heta}JC$	Thermal Resistance, Junction to Ca	se		20° C/W	

FAIRCHILD • BF336 • BF337 • BF338

SYMBOL	CHARACTERISTIC	BF	336	BF337		BF338				
STIVIBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
OFF CHARAC	TERISTICS		-							
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	180		200		225		V	I _C = 4.0 mA, I _B = 0	
V _{CER(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	185		250		300		v	I_C = 1.0 mA, R_{BE} = 1.0 KΩ, $T_A \le 150$ ° C	
v _{сво}	Collector-Base Breakdown Voltage	185		250		300	*	V.	I _C = 1.0 mA, I _E = 0	
VEBO	Emitter-Base Breakdown Voltage	5.0		5.0		5.0		V	IE = 0.1 mA, IC = 0	
CER	Collector Cutoff Current		0.1		0.1		0.1	mA mA mA	V_{CE} = 150 V, R_{BE} = 1.0 KΩ V_{CE} = 200 V, R_{BE} = 1.0 KΩ V_{CE} = 250 V, R_{BE} = 1.0 KΩ	
ON CHARACT	ERISTICS									
pEE	DC Current Gain (Note 1)	20		20		20			I _C = 30 mA, V _{CE} = 10 V	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.2		1.2		1.2	V	I _C = 30 mA, V _{CE} = 10 V	
OYNAMIC CH	ARACTERISTICS									
f _T	Current-Gain-Bandwidth Product	50		50		50		MHz	I _C = 30 mA, V _{CE} = 20 V, f = 20 MH	
C _{re}	Common Emitter Reverse Transfer Capacitance		3.5	-	3.5		35.		V _{CE} = 20 V, I _C = 0, f = 0.5 MHz	
r _b , C _c	Collector to Base Time Constant		100		100		100	ps	V _{CB} = 20 V, I _E = 30 mA, f = 10 MH	

BFX34

NPN SILICON

HIGH CURRENT GENERAL PURPOSE DEVICE FOR EUROPEAN MARKET

- 5.0 W DISSIPATION AT 25°C CASE
- 5.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 40 150 hFE AT IC 2.0 A

ABSOLUTE MAXIMUM RATINGS (Note 1)

Marinarina	\/altanaa		C
Maximum	v or tages	ano	Currents

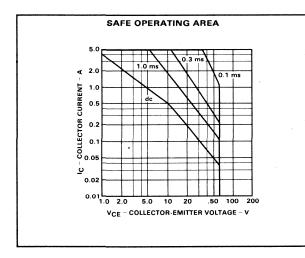
V_{CEO} Collector to Emitter Voltage V_{CBO} Collector to Base Voltage V_{EBO} Emitter to Base Voltage

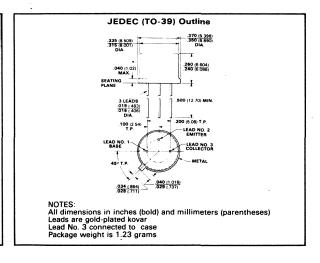
IC Continuous Collector Current

Maximum Power Dissipation

P_D Total Dissipation @ 25°C Case Temperature

Derate Linearly from 25°C

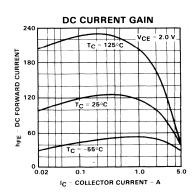

Maximum Temperatures

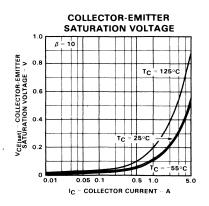

T_J,T_{stq} Storage and Operation Junction Temperatures

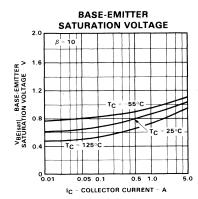
Thermal Characteristics

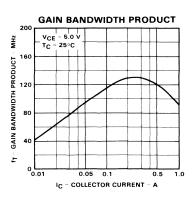
 $R_{ heta JC}$ Thermal Resistance, Junction to Case

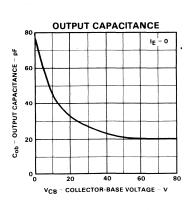
BFX34 60 V 120 V 6.0 V 5.0 A 5.0 W 28.6 mW/°C -55°C to +200°C



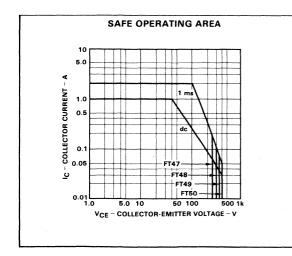

FAIRCHILD • BFX34

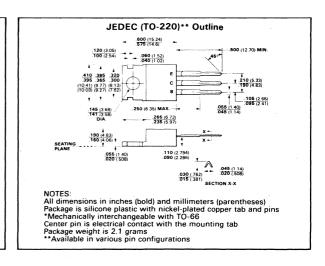

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


CVMDOI	01117	BF	X34		
SYMBOL	CHARACTERISTIC	MIN	MAX	UNIT	TEST CONDITIONS
FF CHARAC	TERISTICS				
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		V	I _C = 100 mA, I _B = 0
v _{сво}	Collector-Base Breakdown Voltage	120		V	I _C = 5.0 mA, I _E = 0
V _{EBO}	Emitter-Base Breakdown Voltage	6.0		٧	I _E = 1.0 mA, I _C = 0
I _{CES}	Collector Reverse Current		10	μΑ	V _{CE} = 60 V, V _{BE} = 0
I _{EBO}	Emitter Cutoff Current		10	μΑ	V _{EB} = 4.0 V, I _C = 0
N CHARACT	ERISTICS		1		<u> </u>
		40	150		I _C = 2.0 A, V _{CE} = 2.0 V
h _{FE}	DC Current Gain (Note 1)	100	TYP		$I_C = 1.0 \text{ A}, V_{CE} = 2.0 \text{ V}$
		75	TYP		$I_C = 1.5 \text{ A}, V_{CE} = 2.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.0	V	I _C = 5.0 A, I _B = 0.5 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		1.6	V	I _C = 5.0 A, I _B = 0.5 A
ҮМАМІС СН	ARACTERISTICS		-		
C _{ob}	Output Capacitance		100	pF	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz
C _{TE}	Emitter-Transition Capacitance		400	pF	V _{EB} = 0.5 V, I _C = 0, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	3.5			I _C = 0.5 A, V _{CE} = 5.0 V, f = 20 MHz
WITCHING C	HARACTERISTICS				
^t on	Turn On Time		0.6	μs	I _C = 5.0 A, I _{B1} = 5.0 A
toff	Turn Off Time		1.2	μs	I _C = 5.0 A, I _{B1} = I _{B2} = 0.5 A


FAIRCHILD • BFX34

NPN SILICON


FT47 FT48 FT49 FT50

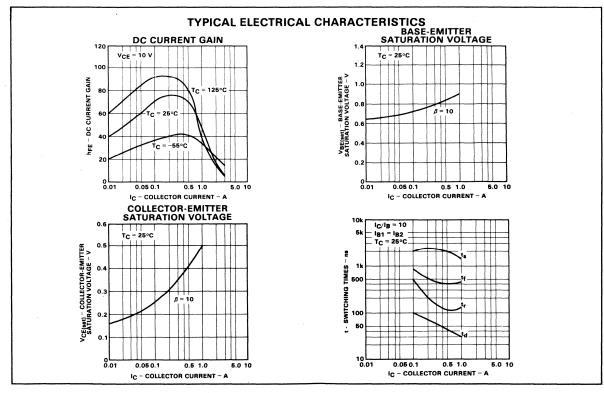

DESIGNED FOR HIGH VOLTAGE APPLICATIONS

- 40 W DISSIPATION AT 25°C CASE
- 1 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 250 MIN TO 400 V MIN V_{CEO}

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum V	/oltages and Currents	FT47	FT48	FT49	FT50	
VCEO	Collector to Emitter Voltage	250 V	300 V	350 V	400 V	
VCBO	Collector to Base Voltage	350 V	400 V	450 V	500 V	
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V	5.0 V	
lc l	Continuous Collector Current	1.0 A	1.0 A	1.0 A	1.0 A	
۱č	Peak Collector Current	2.0 A	2.0 A	2.0 A	2.0 A	
ΙΒ̈́	Continuous Base Current	0.6 A	0.6 A	0.6 A	0.6 A	
Maximum P	ower Dissipation					(6)
P_{D}	Total Dissipation @ 25°C Case Temp	perature			40 W	Bull
	Derate Linearly from 25°C			. 0	.32 W/°C	
Maximum T	emperatures					1
T_J, T_sta	Storage and Operation Junction Ten	nperatures		−65°C to	+150°C	
Thermal Ch	aracteristics					
$R_{ heta}JC$	Thermal Resistance, Junction to Cas	e		3	3.13°C/W	<u> </u>

FAIRCHILD • FT47 • FT48 • FT49 • FT50


ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted) FT50 FT47 FT48 FT49 SYMBOL UNIT **TEST CONDITIONS** CHARACTERISTIC MIN MAX MIN MAX MIN MAX MIN MAX OFF CHARACTERISTICS

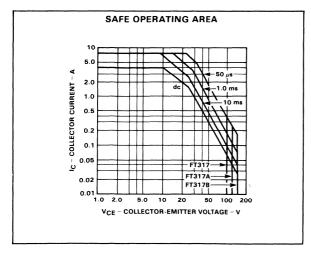
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	250		300		350		400		· V	$I_C = 30 \text{ mA}, I_B = 0$
			1.0							mA	V _{CE} = 150 V, I _B = 0
	Collector Cutoff Current				1.0				_	mΑ	V _{CE} = 200 V, I _B = 0
CEO	Collector Cutoff Current						1.0			mA .	V _{CE} = 250 V, I _B = 0
		1.11		1 2 2					1.0	mA	V _{CE} = 300 V, I _B = 0
			1.0							mΑ	V _{CF} = 350 V, V _{BF} = 0
		ŀ			1.0					mA	V _{CE} = 400 V, V _{BE} = 0
CES	Collector Reverse Current						1.0			mA	V _{CE} = 450 V, V _{BE} = 0
		1.		1				1	1.0	mA	V _{CE} = 500 V, V _{BE} = 0
¹ ЕВО	Emitter Cutoff Current		1.0		1.0		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0

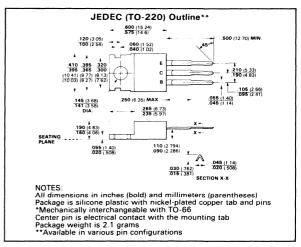
CHARACT	TERISTICS										
h _{FE}	DC Current Gain (Note 1)	30 10	150	30 10	150	30 10	150	30 10	150		I _C = 0.3 A, V _{CE} = 10 V I _C = 1.0 A, V _{CE} = 10 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.0		1.0		1.0		1.0	V	I _C = 1.0 A, I _B = 0.2 A
V _{BE(on)}	Base-Emitter ''On'' Voltage (Note 1)		1.5		1.5		1.5		1.5	V	I _C = 1.0 A, V _{CE} = 10 V

DYNAMIC CH	DYNAMIC CHARACTERISTICS										
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	5.0		5.0		5.0		5.0			I _C = 0.2 A, V _{CE} = 10 V, f = 2.0 MHz
h _{fe}	Small Signal Current Gain	25		25		25		25			I _C = 0.2 A, V _{CE} = 10 V, f = 1.0 KHz

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

NPN SILICON


FT317 FT317A FT317B


DESIGNED FOR HIGH FREQUENCY DRIVER IN AUDIO AMPLIFIERS

- 40 W DISSIPATION AT 25°C CASE
- 4.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 35 MINIMUM hFE @ 1.0 A
- COMPLEMENT TO FT417, FT417A, FT417B

ABSOLUTE MAXIMUM RATINGS (Note 1)

ADOCEOTE MA	CAMPON HAT INGO (Note 1)				
Maximum Vo	oltages and Currents	FT317	FT317A	FT317B	
VCEO	Collector to Emitter Voltage	100 V	120. V	140 V	
Vcво	Collector to Base Voltage	100 V	120 V	140 V	
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V	
IC ·	Continuous Collector Current	4.0 A	4.0 A	4.0 A	
IC	Peak Collector Current	8.0 A	8.0 A	8.0 A	
lΒ	Continuous Base Current	2.0 A	2.0 A	2.0 A	
Maximum Po	wer Dissipation				
P_{D}	Total Dissipation @ 25°C Case Temperature			40 W	J. J.
	Derate Linearly from 25°C			0.32 W/°C	
Maximum Te	mperatures				
TJ, T _{stq}	Storage and Operation Junction Temperatures		–65°	C to +150°C	
Thermal Cha	racteristics				
$R_{\theta}JC$	Thermal Resistance, Junction to Case			3.13°C/W	

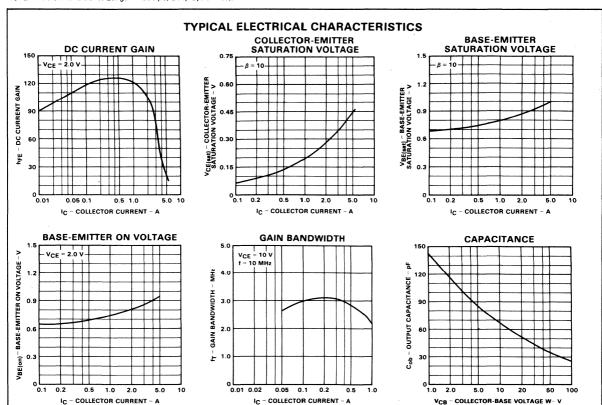
FAIRCHILD • FT317 • FT317A • FT317B

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

Γ	SYMBOL	CHARACTERISTIC	FT317		FT317A		A FT317B		UNIT	TEST CONDITIONS	
	STWIBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	ONT	TEST CONDITIONS	

OFF CHARACTERISTICS

V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	100		120		140		V	I _C = 10 mA, I _B = 0
			0.5					mA	V _{CE} = 100 V, I _B = 0
ICEO	Collector Cutoff Current				0.5			mA	V _{CE} = 120 V, I _B = 0
					-		0.5	mA	V _{CE} = 140 V, I _B = 0
			0.01					mA	V _{CB} = 100 V, I _E = 0
¹ СВО	Collector Cutoff Current				0.01			mA	V _{CB} = 120 V, I _E = 0
							0.01	mA .	V _{CB} = 140 V, I _E = 0
IEBO	Emitter Cutoff Current		0.1		0.1		0.1	mA	V _{EB} = -5.0 V, I _C = 0


ON CHARACTERISTICS

hFE	DC Current Gain (Note 1)	35 20		35 20		35 20			I _C = 1.0 A, V _{CE} = 2.0 V I _C = 3.0 A, V _{CE} = 2.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		0.5		0.5		0.5	V	I _C = 1.0 A, I _B = 0.1 A
VBE(on)	Base-Emitter "On" Voltage (Note 1)		1.0		1.0		1.0	٧	I _C = 1.0 A, V _{CE} = 2.0 V

DYNAMIC CHARACTERISTICS

f _T	Current-Gain-Bandwidth Product	20		20		20		MHz	$I_C = 200 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 10 MHz
C _{ob}	Output Capacitance		100		100		100	pF	V _{CB} = 20 V, I _E = 0, f = 1.0 MHz

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

POWER DARLINGTON

FT359

COLLECTOR

EMITTER

NPN SILICON

HIGH VOLTAGE, HIGH CURRENT DARLINGTON DEVELOPED FOR **IGNITION (COIL DRIVER) APPLICATIONS**

- 125 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 350 V V_{CFO}

350 V 375 V 5.0 V 10 A

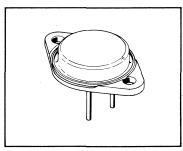
15 A

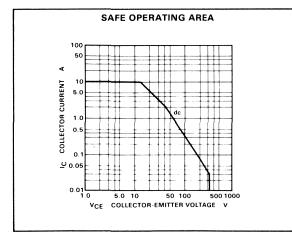
ABSOLUTE MAXIMUM RATINGS (note 1)

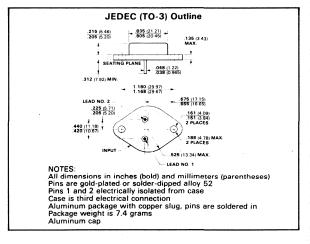
Maximum Voltages and Currents

V CEO	Collector to Emitter Voltage
VCBO	Collector to Base Voltage
VEBO	Emitter to Base Voltage
I _C	Continuous Collector Current
ľĊ	Peak Collector Current
lo.	Continuous Base Current

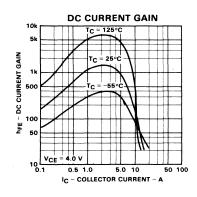
Maximum Power Dissipation

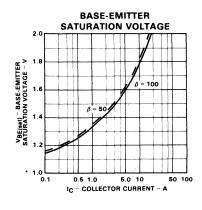

Total Dissipation @ 25°C Case Temperature P_D Derate Linearly from 25°C

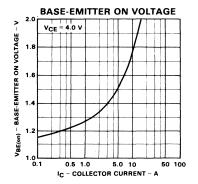

Maximum Temperatures

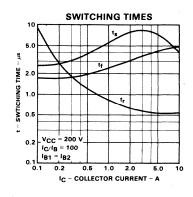

T_J,T_{stg} Storage an Thermal Characteristics Storage and Operation Junction Temperatures

 $R_{\theta,JC}$ Thermal Resistance, Junction to Case


FAIRCHILD • FT359


ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


CHARACTERISTIC	MIN	MAX	UNIT	TEST CONDITIONS	
RISTICS			1	TEST CONDITIONS	
ollector-Emitter Sustaining Voltage (Note 1)	350		٧	I _C = 200 mA, I _B = 0	
ollector-Emitter Breakdown Voltage (Note 1)	350		V	$I_{C} = 200 \text{ mA}, R_{BE} = 100 \Omega$	
ollector Cutoff Current		3.0	mA	V _{CE} = 375 V, I _B = 0	
ollector Cutoff Current		5.0	mA	V _{CE} = 375 V, V _{BE} = -1.5 V	
ollector Cutoff Current		2.0	mA	V _{CE} = 375 V, R _{BE} = 100 Ω	
mitter Cutoff Current		10	mA	V _{EB} = 5.0 V, I _C = 0	
- c	ollector-Emitter Breakdown Voltage (Note 1) ollector Cutoff Current ollector Cutoff Current	ollector-Emitter Breakdown Voltage (Note 1) 350 ollector Cutoff Current ollector Cutoff Current nitter Cutoff Current	ollector-Emitter Breakdown Voltage (Note 1) 350 ollector Cutoff Current 3.0 ollector Cutoff Current 5.0 ollector Cutoff Current 2.0 mitter Cutoff Current 10	V State State	


hFE	DC Current Gain (Note 1)	250			I _C = 3.0 A, V _{CE} = 3.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		2.5	V	I _C = 7.0 A, I _B = 140 mA
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		2.8	V	I _C = 7.0 A, I _B = 140 mA

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

NPN SILICON

FT401 FT402

HIGH VOLTAGE, HIGH POWER DEVICES SPECIFICALLY DESIGNED FOR IGNITION SYSTEMS AND HIGH VOLTAGE APPLICATIONS REQUIRING RUGGED SOA CHARACTERISTICS

- 100 W DISSIPATION AT 25°C CASE
- 3.5 A MAXIMUM CONTINUOUS COLLECTOR CURRENT (FT402)
- 0.5 mA MAX ICEO AT 400 V

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum Voltage and Currents

V_{CEO} Collector to Emitter Voltage
V_{EBO} Emitter to Base Voltage
I_C Continuous Collector Current
I_R Continuous Base Current

Maximum Power Dissipation

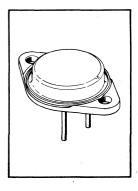
PD Total Dissipation @ 25°C Case Temperature

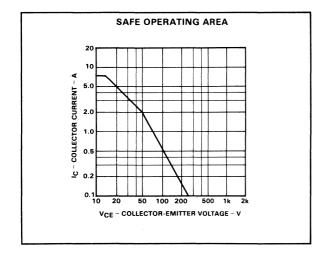
Derate Linearly from 25°C

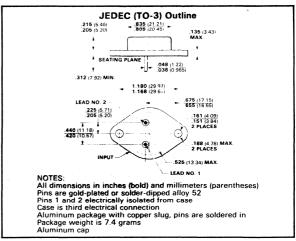
Maximum Temperatures

T_J,T_{stg} Storage and Operation Junction Temperatures

Thermal Characteristics


 $R_{ heta JC}$ Thermal Resistance, Junction to Case


FT401	FT402
400 V	400 V
5.0 V	5.0 V
2.0 A	2.0 A
1.0 A	1.0 A
	400 111


100 W 0.57 W/°C

-65°C to +200°C

1.75°C/W

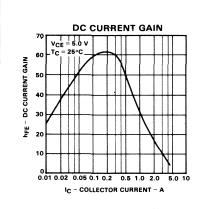
FAIRCHILD • FT401 • FT402

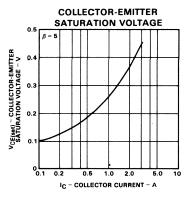
E. E.T.		/O	
	CHARACTERISTICS		

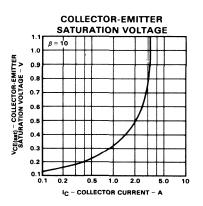
SYMBOL	CHARACTERISTIC	FT401		FT402		UNIT	TEST CONDITIONS
01502	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS

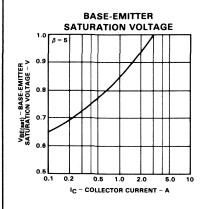
OFF CHARACTERISTICS

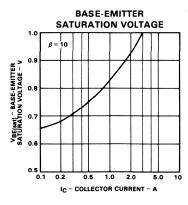
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	300		325		٧	I _C = 100 mA, I _B = 0
ICEO	Collector Cutoff Current		0.5	1945 1945	0.5	mA	V _{CE} = 400 V, I _B = 0
ICEX	Collector Cutoff Current		0.5		0.5	mA	V _{CE} = 400 V, V _{BE} = -1.5 V
I _{EBO}	Emitter Cutoff Current		5.0		5.0	mA	V _{EB} = 5.0 V, I _C = 0

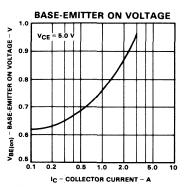

ON CHARACTERISTICS


hFE	DC Current Gain (Note 1)	20	100	20	100		I _C = 0.5 A, V _{CE} = 5.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		0.8		2.0	V	I _C = 0.5 A, I _B = 0.05 A I _C = 3.0 A, I _B = 0.6 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		1.5		1.5	V	I _C = 3.0 A, I _B ≈ 0.6 A


DYNAMIC CHARACTERISTICS


- 1							
	f	Current-Gain-	20	2.0		MHz	I _C = 0.5 A, V _{CE} = 5.0 V,
- 1	'T	Bandwidth Product	2.0	2.0	İ	IVITIZ	f = 1.0 MHz


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.



NPN SILICON

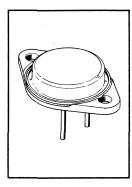
FT410 FT411

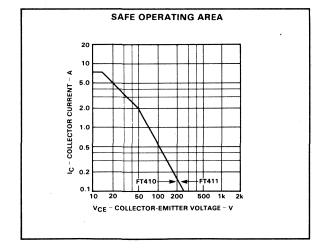
HIGH VOLTAGE, HIGH POWER DEVICES SPECIFICALLY DESIGNED FOR IGNITION SYSTEMS AND HIGH VOLTAGE APPLICATIONS REQUIRING RUGGED SOA CHARACTERISTICS

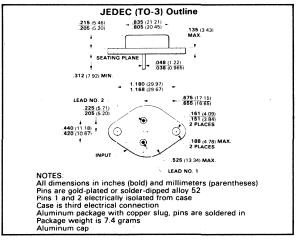
- 100 W DISSIPATION AT 25°C CASE
- 7.5 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 0.25 mA MAX I_{CEO} AT 300 V (FT411)

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum \	Voltages and Currents						
VCEO	Collector to Emitter Voltage						
VCBO	Collector to Base Voltage						
I _C	Continuous Collector Current						
· IB	Continuous Base Current						
Maximum Power Dissipation							
PD	Total Dissipation @ 25°C Case						
	Derate Linearly from 25°C						


Temperature


Maximum Temperatures


T_J,T_{stg} Storage and Operation Junction Temperatures Thermal Characteristics

Thermal Resistance, Junction to Case $R_{\theta,IC}$

FT410	FT411
200 V	300 V
5.0 V	5.0 V
7.5 A	7.5 A
3.75 A	3.75 A
	100 W 0.57 W/°C
-65°C	to +200°C
•	1.75°C/W

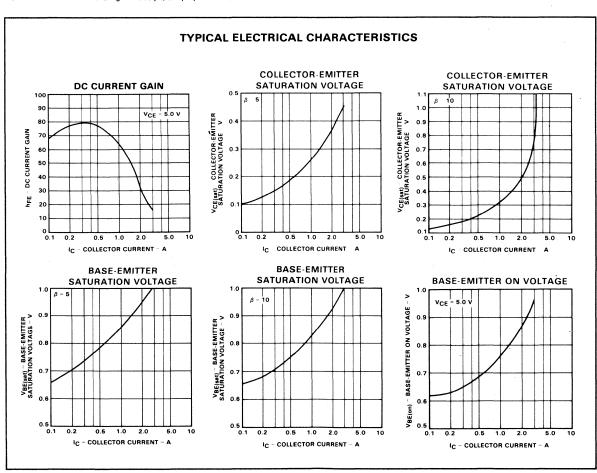
FAIRCHILD • FT410 • FT411

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	FT410		FT411		LINIT	TEST CONDITIONS	
STINIBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARAC	TERISTICS							
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	200		300		٧	I _C = 100 mA, I _B = 0	
ICEO	Collector Cutoff Current		0.25		0.25	mA mA	V _{CE} = 200 V, I _B = 0 V _{CE} = 300 V, I _B = 0	
ICEX	Collector Cutoff-Current		0.5		0.5	mA	V _{CEX} = 300 V, V _{BE} = -1.5 V, T _C = 125°C	
I _{EBO}	Emitter Cutoff Current		5.0		5.0	mA	V _{EB} = 5.0 V, I _C = 0	
N CHARACT	ERISTICS							
^h FE	DC Current Gain (Note 1)	30 10	90	30 10	90		I _C = 1.0 A, V _{CE} = 5.0 V I _C = 2.5 A, V _{CE} = 5.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		0.8 5.0		0.8 5.0	V V	I _C = 1.0 A, I _B = 0.1 A I _C = 7.5 A, I _B = 3.75 A	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		1.5		1.5	V	I _C = 1.0 A, I _B = 0.1 A	

5.0

MHz


5.0

 $I_C = 0.2 A$, $V_{CE} = 5.0 V$,

f = 1.0 MHz

| 'T | Bandwidth Product NOTE: 1. Pulse conditions: Length = 300 μs, Duty Cycle = 2%.

Current-Gain-

NPN SILICON

FT413 FT423

HIGH POWER, HIGH VOLTAGE DEVICE DESIGNED SPECIFICALLY FOR AUTO IGNITION SYSTEMS

- 100 W DISSIPATION AT 25°C CASE
- 7.5 A MAXIMUM CONTINUOUS COLLECTOR CURRENT

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum V	oltages and Currents
VCEO	Collector to Emitter Voltage
VEBO	Emitter to Base Voltage

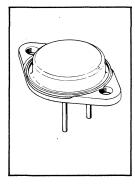
lc Continuous Collector Current Continuous Base Current l_B

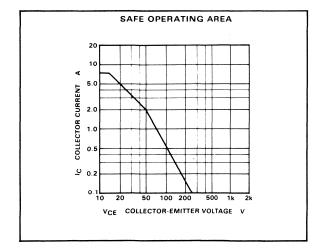
Maximum Power Dissipation

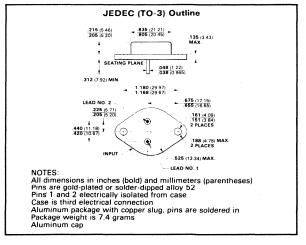
Total Dissipation @ 25°C Case Temperature PD

Derate Linearly from 25°C

Maximum Temperatures


 T_{J} , T_{stg} Storage and Operation Junction Temperatures


Thermal Characteristics


Thermal Resistance, Junction to Case $R_{\theta,IC}$

FT413 FT423 400 V 400 V 5.0 V 5.0 V 7.5 A 7.5·A 3.75 A 3.75 A 100 W 0.57 W/°C -65° C to $+200^{\circ}$ C

1.75 W/°C

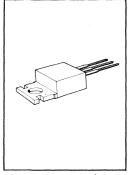
FAIRCHILD • FT413 • FT423

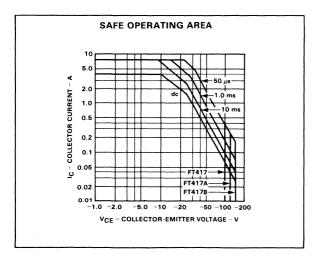
SYMBOL	CHARACTERISTIC	FT	FT413		FT423		TEST CONDITIONS
31 MBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARAC	TERISTICS						
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	325		325		V	I _C = 100 mA, I _B = 0
CEO	Collector Cutoff Current		0.25		0.25	mA	V _{CE} = 400 V, I _B = 0
ICEX	Collector Cutoff Current		0.5		0.5	mA	V _{CE} = 400 V, V _{BE} = -1.5 V, T _C = 125°C
^I EBO	Emitter Cutoff Current		5.0		5.0	mA	V _{EB} = 5.0 V, I _C = 0
CHARACT	ERISTICS						
hFE	DC Current Gain (Note 1)	20 15	80	30 10	90		I _C = 0.5 A, V _{CE} = 5.0 V I _C = 1.0 A, V _{CE} = 5.0 V I _C = 1.0 A, V _{CE} = 5.0 V I _C = 2.5 A, V _{CE} = 5.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		0.8 5.0		0.8 5.0	V V	$I_C = 0.5 \text{ A}, I_B = 0.05 \text{ A}$ $I_C = 1.0 \text{ A}, I_B = 0.1 \text{ A}$ $I_C = 7.5 \text{ A}, I_B = 3.75 \text{ A}$
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		1.5		1.5	V	I _C = 0.5 A, I _B = 0.05 A I _C = 1.0 A, I _B = 0.1 A
NAMIC CH	ARACTERISTICS						
f⊤	Current-Gain- Bandwidth Product	5.0	TYP	5.0	TYP	MHz	I _C = 0.2 A, V _{CE} = 5.0 V, f = 1.0 MHz

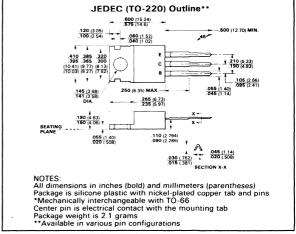
Bandwidth Product NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

TYPICAL ELECTRICAL CHARACTERISTICS BASE-EMITTER DC CURRENT GAIN **SATURATION VOLTAGE** 5.0 V β = **5** VCE 60 CURRENT GAIN 0.9 VBE(sat) - BASE-EMITTER SATURATION VOLTAGE - V 50 0.8 40 o 30 0.7 þ£E 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 0.2 5.0 0.1 1.0 2.0 0.5 IC - COLLECTOR CURRENT - A IC COLLECTOR CURRENT A COLLECTOR EMITTER BASE EMITTER ON VOLTAGE SATURATION VOLTAGE 10 β VCE 1.0 BASE-EMITTER ON VOLTAGE 0.9 0.8 0.7 0.6 VBE(on) 0.2 0.5 0.1**L** 0.2 2.0 5.0 1.0 2.0 5.0 IC COLLECTOR CURRENT A IC COLLECTOR CURRENT A

PNP SILICON

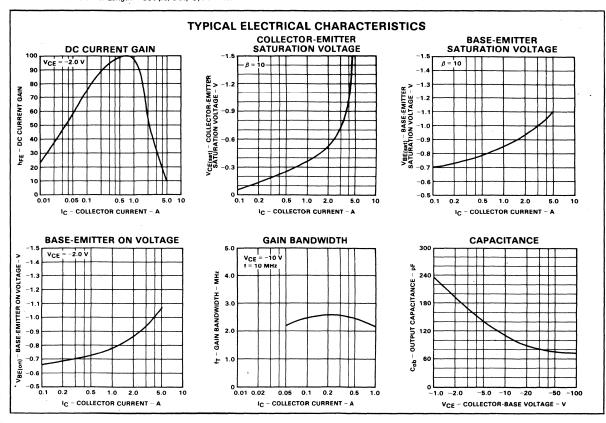

FT417 FT417A FT417B


DESIGNED FOR HIGH FREQUENCY DRIVER IN AUDIO AMPLIFIERS


- 40 W DISSIPATION AT 25°C CASE
- 4.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 35 MINIMUM hFE @ 1.0 A
- COMPLEMENT TO FT317, FT317A, FT317B

ABSOLUTE MAXIMUM RATINGS (Note 1)

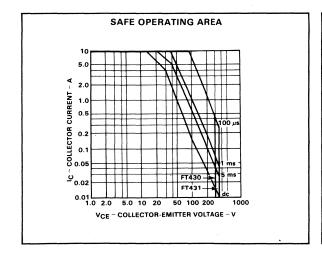
IDSOLO I E IVI	ANIMOW HAT INGS (Note 1)				
Maximum V	oltages and Currents	FT417	FT417A	FT417B	
VCEO	Collector to Emitter Voltage	-100 V	-120 V	-140 V	
VCBO ·	Collector to Base Voltage	-100 V	-120 V	-140 V	
VEBO	Emitter to Base Voltage	-5.0 V	-5.0 V	-5.0 V	
IC IC	Continuous Collector	4.0 A	4.0 A	4.0 A	
IČ.	Peak Collector Current	8.0 A	8.0 A	8.0 A	
ΙΒ	Continuous Base Current	2.0 A	2.0 A	2.0 A	
Maximum P	ower Dissipation				(
P_{D}	Total Dissipation @ 25°C Case Temperature			40 W	
_	Derate Linearly from 25°C			0.32 W/°C	
Maximum T	emperatures				
TJ, T _{sta}	Storage and Operation Junction Temperatures		-65°	C to +150°C	
Thermal Ch				j.	
$R_{oldsymbol{ heta}}$ JC	Thermal Resistance, Junction to Case 3.13°C/W				

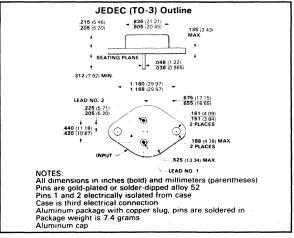


FAIRCHILD • FT417 • FT417A • FT417B

	CHARACTERISTIC	FT417		FT417A		FT417B			TEST CONDITIONS
SYMBOL		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARACT	ERISTICS								
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-100		-120		-140		V	I _C = 10 mA, I _B = 0
			0.5					mA	V _{CE} = -100 V, I _B = 0
ICEO	Collector Cutoff Current				0.5			mA	V _{CE} = -120 V, I _B = 0
							0.5	mA	V _{CE} = -140 V, I _B = 0
			0.01	4.44				mA	V _{CB} = -100 V, I _E = 0
I _{CBO}	Collector Cutoff Current				0.01			mA	V _{CB} = -120 V, I _E = 0
		Ì	1	Ì			0.01	mA	$V_{CB} = -140 \text{ V, I}_{E} = 0$
^I EBO	Emitter Cutoff Current		0.1		0.1		0.1	mA	V _{EB} = -5.0 V, I _C = 0
N CHARACTE	ERISTICS								
		35		35		35			I _C = 1.0 A, V _{CE} = -2.0 V
hFE	DC Current Gain (Note 1)	20		20		20			I _C = 3.0 A, V _{CE} = -2.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-0.5		-0.5		-0.5	V	I _C = 1.0 A, I _B = 0.1 A
V _{BE} (on)	Base-Emitter "On" Voltage (Note 1)		-1.0		-1.0		-1.0	V	I _C = 1.0 A, V _{CE} = -2.0 V
YNAMIC CHA	RACTERISTICS						<u> </u>		
fΤ	Current-Gain-Bandwidth Product	20		20		20		MHz	I _C = 200 mA, V _{CE} = -10 f = 10 MHz
C _{ob}	Output Capacitance		100		100		100	pF	V _{CB} = -20 V, I _E = 0, f = 1.0 MHz

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

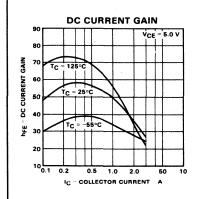

NPN SILICON

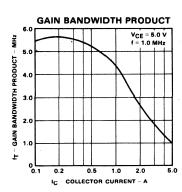

FT430 FT431

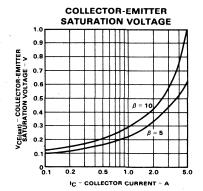
SUITABLE FOR USE IN INVERTERS, DEFLECTION CIRCUITS, SWITCHING REGULATORS AND IGNITION CIRCUITS

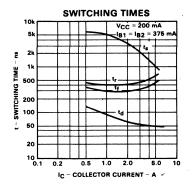
- 125 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 400 V V_{CEO}

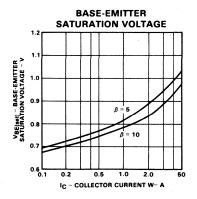
ABSOLUTE MAX	KIMUM RATINGS (Note 1)			
Maximum Vol	tages and Currents	FT430	FT431	
V _{CEO}	Collector to Emitter Voltage	400 V	400 V	
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	
lC .	Continuous Collector Current	10 A	10 A	1 1 1 2 1 1 1 1 1 1 1 1 1 1
I _B	Continuous Base Current	5.0 A	5.0 A	
Maximum Pow	er Dissipation			
PD	Total Dissipation @ 25°C Case Temperature		125 W	
D	Derate Linearly from 25°C		0.71 W/°C	
Maximum Tem	peratures			
T _J , T _{stg}	Storage and Operation Junction Temperatures	−65°C	to +200°C	
Thermal Chara	cteristics			
R_{θ} JC	Thermal Resistance, Junction to Case		1.4°C/W	


FAIRCHILD • FT430 • FT431


SYMBOL	CHARACTERISTIC	FT430		F	T431	UNIT	TEST COMPLETIONS
STWBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARAC	TERISTICS						
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	300		325		٧	I _C = 100 mA, I _B = 0
CEO	Collector Cutoff Current		2.5		2.5	mA	V _{CE} = 400 V, I _B = 0
CEX	Collector Cutoff Current		5.0		5.0	mA	V _{CE} = 400 V, V _{BE} = -1.5 V T _C = 125°C
ЕВО	Emitter Cutoff Current		5.0		5.0	mA	V _{EB} = 5.0 V, I _C = 0
CHARACT	ERISTICS						
μŁΕ	DC Current Gain (Note 1)	15 10	45	15 10	35		I _C = 2.5 A, V _{CE} = 5.0 V I _C = 3.5 A, V _{CE} = 5.0 V
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		0.9 5.0		0.7 5.0	v v	I _C = 2.5 A, I _B = 0.5 A I _C = 10 A, I _B = 5.0 A
V _{BE(sat)}	Base-Emitter Saturation Voltage		1.5		1.5	٧	I _C = 2.5 A, I _B = 0.5 A


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

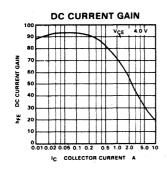

(Note 1)

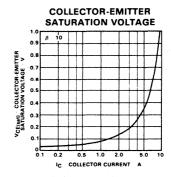

TYPICAL ELECTRICAL CHARACTERISTICS

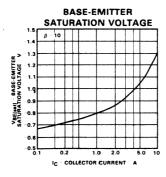
FAIRCHILD • FT2955

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC		FT2955		TEST CONDITIONS	
STMBOL			MAX	UNIT	TEST CONDITIONS	
OFF CHARAC	TERISTICS					
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-60		٧	I _C = 200 mA, I _B = 0	
V _{CER (sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-70		V	I_C = 200 mA, R_{BE} = 100 Ω	
CEO	Collector Cutoff Current		0.7	mA	V _{CE} = -30 V, I _B = 0	
CEX	Collector Cutoff Current		5.0 30	mA mA	V _{CE} = -100 V, V _{BE} = 1.5 V V _{CE} = -100 V, V _{BE} = 1.5 V, T _C = 125°C	
I _{EBO}	Emitter Cutoff Current		5.0	mA	V _{EB} = -7.0 V, I _C = 0	


ON CHARACTERISTICS


h _{FE}	DC Current Gain (Note 1)	5.0 20	70		I _C = 10 A, V _{CE} = -4.0 V I _C = 4.0 A, V _{CE} = -4.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-1.1 -8.0	V	I _C = 4.0 A, I _B = 400 mA I _C = 10 A, I _B = 3.3 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.8	V	I _C = 4.0 A, V _{CE} = -4.0 V


DYNAMIC CHARACTERISTICS

f⊤	Current-Gain-Bandwidth Product	2.0		MHz	I _C = 500 mA, V _{CE} = -10 V, f = 500 kHz
h _{fe}	Small Signal Current Gain	15	120		I _C = 1.0 A, V _{CE} = -4.0 V, f = 1 kHz

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

PNP SILICON

FT2955

DESIGNED FOR GENERAL PURPOSE SWITCHING AND AMPLIFIER APPLICATIONS

- 70 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 70 MAXIMUM her AT 4 Adc
- 1.1 Vdc MAXIMUM VCE(sat) AT 4 Adc

ABSOLUTE MAXIMUM RATINGS (Note 1)

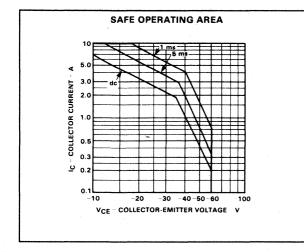
Maximum	Voltages	and	Currents
---------	----------	-----	----------

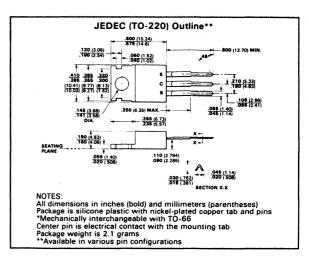
VCEO	Collector to Emitter Voltage
V _{СВО}	Collector to Base Voltage
VEBO	Emitter to Base Voltage
	Continuous Collector Current
lc lc	Peak Collector Current
IB.	Continuous Base Current
· ·	

Maximum Power Dissipation

PD Total Dissipation @ 25°C Case Temperature

Derate Linearly from 25°C


Maximum Temperatures


T_J,T_{stg} Storage and Operation Junction Temperatures

Thermal Characteristics

 $R_{ heta JC}$ Thermal Resistance, Junction to Case

-60 V -100 V -7.0 V 10 A 15 A 7.0 A 70 W 0.56 W/°C -65°C to +150°C 1.79°C/W

FT3055

NPN SILICON

DESIGNED FOR GENERAL PURPOSE AMPLIFIER AND SWITCHING APPLICATIONS

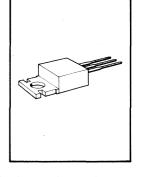
- 70 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- DC CURRENT GAIN SPECIFIED TO 10 A
- HIGH EFFICIENCY COMPACT PACKAGE

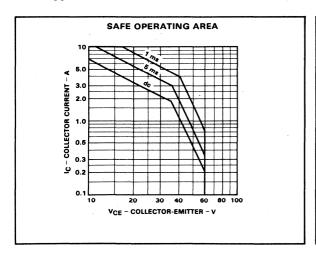
ABSOLUTE MAXIMUM RATINGS

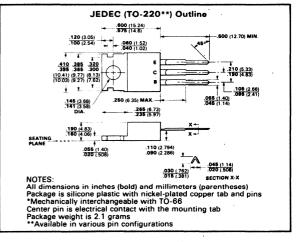
Maximum Voltages and Currents

V _{CE}	Collector to Emitter Voltage	60 V
VCB	Collector to Base Voltage	100 V
VEB	Emitter to Base Voltage	7.0 V
ار	Continuous Collector Current	10 A
IB	Continuous Base Current	7.0 A

Maximum Power Dissipation


Total Dissipation @ 25°C Case Temperature 70 W PD Derate Linearly from 25°C 0.56 W/°C


Maximum Temperatures


Storage and Operating Junction Temperatures -65°C to +150°C TJ, Tsta

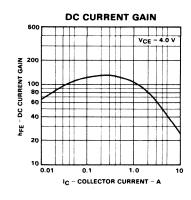
Thermal Characteristics

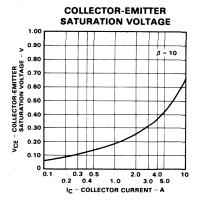
 $R_{\theta,JC}$ Thermal Resistance, Junction to Case 1.78°C/W

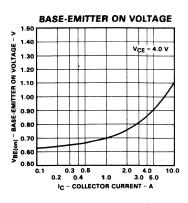
FAIRCHILD • FT3055

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN	MAX	UNITS	TEST CONDITIONS
FF CHARAC	TERISTICS				
^I CEX	Collector Cutoff Current		5.0 30	mA	V _{CE} = 100 V, V _{BE} = -1.5 V V _{CE} = 100 V, V _{BE} = -1.5 V, T _C = 150°C
^I СВО	Collector Cutoff Current		700	μΑ	v _{CB} = 70 V, I _E = 0
^I EBO	Emitter Cutoff Current		5.0	mA	V _{EB} = 7.0 V, I _C = 0
N CHARACT	ERISTICS				
^h FE	DC Current Gain (Note 1)	20 5.0	70		I _C = 4.0 A, V _{CE} = 4.0 V I _C = 10 A, V _{CE} = 4.0 V
			1.1		1 = 404 1 = 044

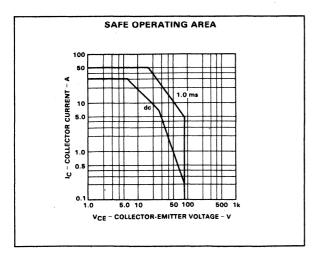

hFE	DC Current Gain (Note 1)	5.0			I _C = 10 A, V _{CE} = 4.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.1 8.0	v	I _C = 4.0 A, I _B = 0.4 A I _C = 10 A, I _B = 3.3 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.8	V	I _C = 4.0 A, V _{CE} = 4.0 V

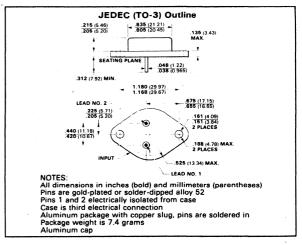

DYNAMIC CHARACTERISTICS


		Current Cala Banduidst Bandust	10	A411-	1 -104 1/ 101/	
<u> </u>	T	Current-Gain-Bandwidth Product	10	MHz	$I_{C} = 1.0 \text{ A}, V_{CF} = 4.0 \text{ V}$	11

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

MJ802


NPN SILICON


HIGH POWER NPN TRANSISTOR FOR USE AS AN OUTPUT DEVICE IN COMPLEMENTARY AUDIO AMPLIFIERS

- 200 W DISSIPATION AT 25°C CASE
- 30 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT TO MJ4502

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum Volta	ages and Currents	MJ802	
VCEO	Collector to Emitter Voltage	90 ∨	
V _{CBO}	Collector to Base Voltage	100 V	
VEBO	Emitter to Base Voltage	4.0 V	
lc .	Continuous Collector Current	30 A	
I _B	Continuous Base Current	7.5 A	
Maximum Powe	er Dissipation	'	
PD	Total Dissipation @ 25°C Case Temperature	200 W	
	Derate linearly from 25°C	1.14 W/°C	11 11
Maximum Tem	peratures		
T_J, T_sta	Storage and Operation Junction Temperatures		
Thermal Charac	eteristics		
$R_{oldsymbol{ heta}JC}$	Thermal Resistance, Junction to Case	0.875°C/W	

FAIRCHILD • MJ802

MJ802

UNIT

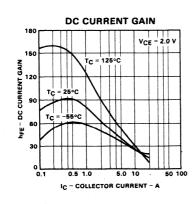
TEST CONDITIONS

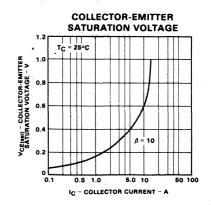
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

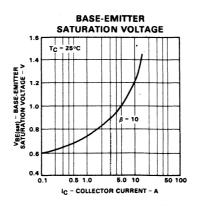
CHARACTERISTIC

STIVIBUL	CHARACTERISTIC	MIN	MAX	UNII	TEST CONDITIONS
FF CHARACT	ERISTICS				
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	90		٧	I _C = 200 mA, I _B = 0
VCER(sus)	Collector-Emitter Sustaining Voltage (Note 1)	100		. ∨	I _C = 200 mA, R _{BE} = 100 Ω
СВО	Collector Cutoff Current		1.0	mA	V _{CB} = 100 V, I _E = 0
,CBO	Concessor Curton Curtons		5.0	mA	V _{CB} = 100 V, I _E = 0, T _C = 150°C
^I EBO	Emitter Cutoff Current		1.0	mA	V _{EB} = 4.0 V, I _C = 0

ON CHARACTERISTICS


SYMBOL


hFE	DC Current Gain (Note 1)	25	100		I _C = 7.5 A, V _{CE} = 2.0 V
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		0.8	٧	I _C = 7.5 A, I _B = 0.75 A
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		1.3	٧	I _C = 7.5 A, I _B = 0.75 A
VBE(on)	Base-Emitter "On" Voltage (Note 1)		1.3	٧	IC = 7.5 A, VCE = 2.0 V


DYNAMIC CHARACTERISTICS

		fŢ	Current-Gain-Bandwidth Product	2.0		MHz	I _C = 1.0 A, V _{CE} = 10 V, f = 1.0 MHz
--	--	----	--------------------------------	-----	--	-----	---

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

PNP SILICON

MJ4502

HIGH POWER PNP TRANSISTOR FOR USE AS AN OUTPUT DEVICE IN COMPLEMENTARY AUDIO AMPLIFIERS

- 200 W DISSIPATION AT 25°C CASE
- 30 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- **COMPLEMENT TO MJ802**

ABSOLUTE MAXIMUM RATINGS (Note 1)

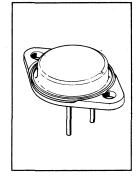
Maximum Voltages and Currents

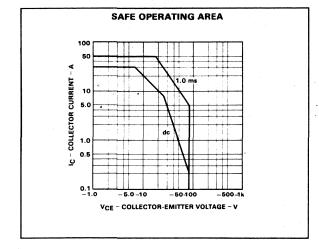
Collector to Emitter Voltage VCEO Collector to Base Voltage V_{СВО} Emitter to Base Voltage VEBO Continuous Collector Current lc. Continuous Base Current I_{B} **Maximum Power Dissipation**

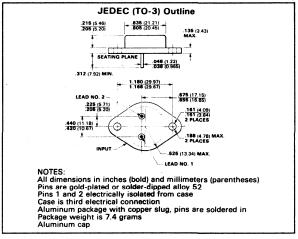
Total Dissipation @ 25°C Case Temperature P_{D}

Derate Linearly from 25°C

Maximum Temperatures

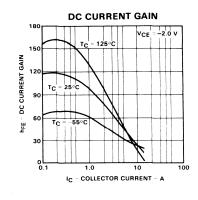

 T_J, T_{stg} Storage and Operation Junction Temperatures

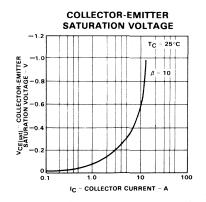

Thermal Characteristics

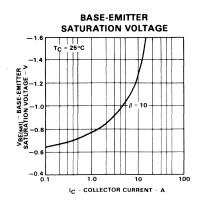

 $R_{\theta JC}$ Thermal Resistance, Junction to Case

-90 V -100 V -4.0 V 30 A 7.5 A 200 W 1.14 W/°C -65°C to +200°C

0.875°C/W




FAIRCHILD • MJ4502


ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

		MJ	MJ4502			
SYMBOL	CHARACTERISTIC	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARAC	TERISTICS					
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-90		V	I _C = 200 mA, I _B = 0	
V _{CER(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-100		V	I_C = 200 mA, R_{BE} = 100 $Ω$	
			1.0	mA	V _{CB} = -100 V, I _E = 0	
СВО	Collector Cutoff Current		5.0	mA	$V_{CB} = -100 \text{ V}, I_{E} = 0,$ $T_{C} = 150^{\circ} \text{ C}.$	
I _{EBO}	Emitter Cutoff Current		1.0	mA	V _{EB} = -4.0 V, I _C = 0	
N CHARACT	ERISTICS					
hFE	DC Current Gain (Note 1)	25	100		I _C = 7.5 A, V _{CE} = -2.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-0.8	V	I _C = 7.5 A, I _B = 0.75 A	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		-1.3	V	I _C = 7.5 A, I _B = 0.75 A	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.3	V	I _C = 7.5 A, V _{CE} = -2.0 V	
YNAMIC CH	ARACTERISTICS					
f _T	Current-Gain-Bandwidth Product	2.0		MHz	I _C = 1.0 A, V _{CE} = -10 V, f = 1.0 MHz	

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

NPN SILICON

MJE3055F

DESIGNED FOR GENERAL PURPOSE AMPLIFIER AND SWITCHING APPLICATIONS

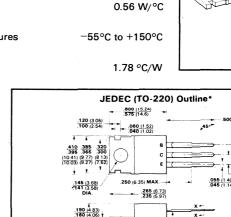
- 70 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- PIN OUT COMPATIBLE WITH MJE3055
- DC CURRENT GAIN SPECIFIED TO 10 A
- 2 MHz MINIMUM f_T AT 500 mA
- HIGH EFFICIENCY COMPACT PACKAGE

ABSOLUTE MAXIMUM RATINGS

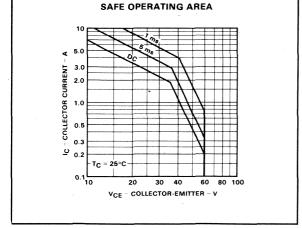
Maximum	Voltages	and	Currents
Maximum	TO: Lagoo	4114	

VCF	Collector to Emitter voltage		
VCB	Collector to Base Voltage		
V _{CB} V _{EB}	Emitter to Base Voltage		
lc	Continuous Collector Current		
l _B	Continuous Base Current		

Maximum Power Dissipation


Total Dissipation @ 25°C Case Temperature P_D 70 W Derate Linearly from 25°C

Maximum Temperatures


T_J, T_{sta} Storage and Operating Junction Temperatures

Thermal Characteristics

Thermal Resistance, Junction to Case $R_{\theta JC}$

60 V 70 V 5 V 10 A 6 A

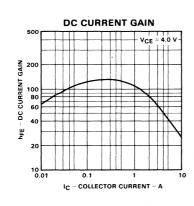
FAIRCHILD • MJE3055F

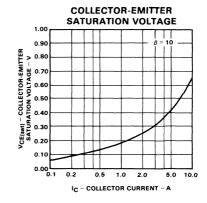
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

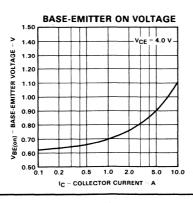
SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			

OFF CHARACTERISTICS

V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		ν	I _C = 200 mA, I _B = 0
I _{CEO}	Collector Cutoff Current		0.7	mA	$V_{CE} = 30 \text{ V, } I_{B} = 0$
ICEX	Collector Cutoff Current		1.0 5.0	mA	V _{CE} = 70 V, V _{BE} = -1.5 V V _{CE} = 70 V, V _{BE} = -1.5 V, T _C = 150°C
^I сво	Collector Cutoff Current		1.Q 10	mA	V _{CB} = 70 V, I _E = 0 V _{CB} = 70 V, I _E = 0, T _C = 150°C
^I EBO	Emitter Cutoff Current		5.0	mA	V _{EB} = 5.0 V, I _C = 0


ON CHARACTERISTICS


h _{FE}	DC Current Gain (Note 1)	20 5.0	70		$I_C = 4.0 \text{ A}, V_{CE} = 4.0 \text{ V}$ $I_C = 10 \text{ A}, V_{CE} = 4.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.1 8.0	V	$I_C = 4.0 \text{ A}, I_B = 0.4 \text{ A}$ $I_C = 10 \text{ A}, I_B = 3.3 \text{ A}$
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.8	V	$I_C = 4.0 \text{ A}, V_{CE} = 4.0 \text{ V}$

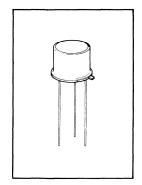

DYNAMIC CHARACTERISTICS

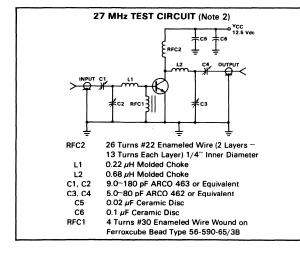
f _T	Current-Gain-Bandwidth Product	2.0	MHz	$I_C = 500 \text{ mA}, V_{CE} = 10 \text{ V}, f = 500 \text{ kHz}$

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

NPN SILICON

MRF8004


DESIGNED PRIMARILY FOR USE IN LARGE SIGNAL OUTPUT AMPLIFIER STAGES


- INTENDED FOR USE IN CITIZEN BAND COMMUNICATION EQUIPMENT OPERATING TO 30 MHz
- HIGH BREAKDOWN VOLTAGES ALLOW A HIGH PERCENTAGE OF UP-MODULATION IN AM CIRCUITS
- SPECIFIED 12.5 V, 27 MHz CHARACTERISTICS


3.5 W - POWER OUTPUT 10 dB - POWER GAIN 70% TYPICAL - EFFICIENCY

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum Vol	tages and Currents	MR F8004
v_{CEO}	Collector to Emitter Voltage	30 V
VCBO	Collector to Base Voltage	60 V
V _{EBO}	Emitter to Base Voltage	3.0 V
IC.	Continuous Collector Current	1.0 A
Maximum Pov	ver Dissipation	
P_{D}	Total Dissipation @ 25°C Case Temperature (Note 1) Derate Linearly from 25°C	5.0 W 28.6 mW/°C
Maximum Ten	nperatures	
T_J, T_stg	Storage and Operation Junction Temperatures	-65°C to +200°C
Thermal Chara	octeristics	
$R_{ heta}$ JC	Thermal Resistance, Junction to Case	35°C/W

FAIRCHILD • MRF8004

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

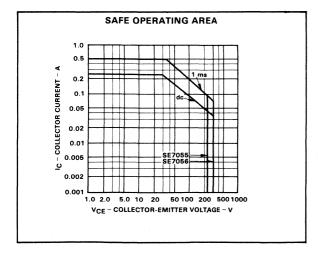
SYMBOL	011.0.0750.0710	MRF8004				
STIVIBUL	CHARACTERISTIC	MIN	MAX	UNIT	TEST CONDITIONS	
OFF CHARACT	TERISTICS					
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	30		V	I _C = 50 mA, I _B = 0	
VCES	Collector-Emitter Breakdown Voltage	60		V	I _C = 200 mA, V _{BE} ≈ 0	
VEBO	Emitter-Base Breakdown Voltage	3.0		V	I _E = 1.0 mA, I _C = 0	
СВО	Collector Cutoff Current		0.01	mA	V _{CB} = 50 V, I _E = 0	
N CHARACTE	ERISTICS					
hFE	DC Current Gain (Note 1)	10			I _C = 400 mA, V _{CE} ≈ 2.0 V	
YNAMIC CHA	ARACTERISTICS					
C _{ob}	Output Capacitance		70	pF	V _{CB} = 12.5 V, I _E = 0, f = 1.0 MHz	
UNCTIONAL	TESTS .					
GPE	Common-Emitter Amplifier Power Gain	10		dB	f = 27 MHz, V _{CC} = 12.5 V, P _{out} = 3.5 W	
η	Collector Efficiency (Note 3)	62.5		%	f = 27 MHz, V _{CC} = 12.5 V, P _{out} = 3.5 W	
Rin	Parallel Equivalent Input Resistance		21 TYP	Ω	P _{out} = 3.5 W, V _{CC} = 12.5 V, f = 27 MHz	
C _{in}	Parallel Equivalent Input Capacitance		900 TYP	pF	P _{out} = 3.5 W, V _{CC} = 12.5 V, f = 27 MHz	
Cout	Parallel Equivalent Output Capacitance		200 TYP	pF	P _{out} = 3.5 W, V _{CC} = 12.5 V, f = 27 MHz	

NOTES:

- 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.
- 2. Percentage up-modulation is measured in this test circuit (Figure 1) by setting the Carrier Power (P_C) to 3.5 watts with V_{CC} = 12.5 Vdc and noting the power input. Then the peak envelope power (PEP) is noted after doubling the original power input to simulate driver modulation (at a 25% duty cycle for thermal considerations) and raising the V_{CC} to 25 Vdc (to simulate the modulating voltage). Percentage up-modulation is then determined by the relation—

Percentage Up-Modulation =
$$\left[\frac{PEP}{PC} \right]^{\frac{1}{2}} - 1$$
 • 100

3.
$$\eta = \frac{R_F P_{out}}{(V_{CC})(I_C)} \cdot 100$$

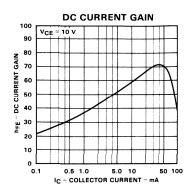

SE7055 SE7056

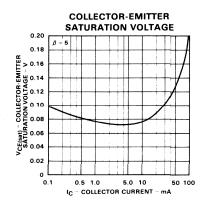
NPN SILICON

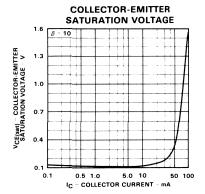
DESIGNED AS A HIGH VOLTAGE VIDEO OUTPUT

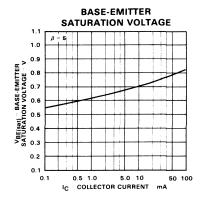
- 7.0 W DISSIPATION AT 25°C
- 500 mA MAXIMUM CONTINUOUS COLLECTOR CURRENT
- V_{CEO} 220 V MIN (SE7055), 300 V MIN (SE7056)

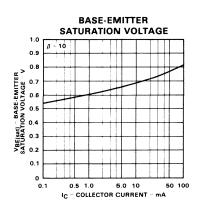
ABSOLUTE MA	XIMUM RATINGS (Note 1)			
Maximum Vo	Itages and Currents	SE7055	SE7056	
V _{CEO}	Collector to Emitter Voltage	220 V	300 V	
V _{CBO}	Collector to Base Voltage	220 V	300 V	
VEBO	Emitter to Base Voltage	7.0 V	7.0 V	
IC .	Continuous Collector Current	500 mA	500 mA	
Maximum Pov	ver Dissipation			District Control of the Control of t
PD	Total Dissipation @ 25°C Case Temperature		7.0 W	
_	Derate Linearly from 25°C	. 2	28.5 mW/°C	
Maximum Ter	mperatures			
T_J , T_{stq}	Storage and Operation Junction Temperatures	-65°C	to +200°C	
Thermal Char	acteristics		•	
$R_{ heta}JC$	Thermal Resistance, Junction to Case		25°C/W	

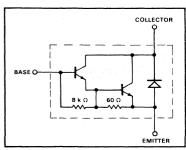



FAIRCHILD • SE7055 • SE7056


SYMBOL	CHARACTERICTIC	SE7055		SE7056				
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
OFF CHARAC	TERISTICS	-						
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	220		300		V	I _C = 5.0 mA, I _B = 0	
V _{CBO}	Collector-Base Breakdown Voltage	220		300		V	I _C = 0.1 mA, I _E = 0	
VEBO	Emitter-Base Breakdown Voltage	7.0		7.0		V	I _E = 0.1 mA, I _C = 0	
СВО	Collector Cutoff Current		0.1 5.0		0.1	μΑ μΑ μΑ	V _{CB} = 150 V, I _E = 0 V _{CB} = 200 V, I _E = 0 V _{CB} = 150 V, I _E = 0, T _C = 125°C V _{CB} = 200 V, I _E = 0, T _C = 125°C	
^I EBO	Emitter Cutoff Current		0.1		0.1	mA	V _{EB} = 6.0 V, I _C = 0	
ON CHARACT	ERISTICS					-		
hFE way	DC Current Gain (Note 1)	40 40 20		40 40 20			$I_C = 30 \text{ mA}, V_{CE} = 20 \text{ V}$ $I_C = 10 \text{ mA}, V_{CE} = 20 \text{ V}$ $I_C = 1.0 \text{ mA}, V_{CE} = 20 \text{ V}$	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.0		1.0	V	I _C = 20 mA, I _B = 2.0 mA	
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1)		0.85		0.85	V	I _C = 20 mA, I _B = 2.0 mA	
DYNAMIC CH	ARACTERISTICS	•						
C _{cb}	Collector-Base Capacitance		3.5		3.5	pF	V _{CB} = 20 V, I _E = 0, f = 1.0 MHz	
C _{eb}	Emitter-Base Capacitance		70		70	pF	V _{EB} = 0.5 V, I _C = 0, f = 1.0 MHz	
h _{fe}	High Frequency Current Gain	2.5					$I_C = 15 \text{mA}, \ V_{CE} = 100 \text{V}, \ f = 20 \text{MH}$	
h _{fe}	High Frequency Current Gain			2.5			I _C = 15 mA, V _{CE} = 150 V, f = 20 MH	
h _{fe}	High Frequency Current Gain	2.0					I_{C} = 3.0 mA, V_{CE} = 200 V, f = 20 MHz, R_{L} = 6.7 K Ω I_{C} = 30 mA, V_{CE} = 20 V, f = 20 MHz, R_{L} = 6.7 K Ω	
	The second secon			2.0			$I_C = 3.0 \text{ mA}, \ V_{CE} = 270 \text{ V},$ $f = 20 \text{ MHz}, \ R_L = 9.0 \text{ K}\Omega$ $I_C = 30 \text{ mA}, \ V_{CE} \stackrel{.}{=} 30 \text{ V},$	
				2.0			$f = 20 \text{ MHz}, R_{\perp} = 9.0 \text{ K}\Omega$	


NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


FAIRCHILD • SE7055 • SE7056


POWER DARLINGTON

NPN SILICON

SE9300 SE9301 SE9302

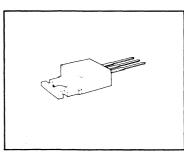
DESIGNED FOR GENERAL PURPOSE AMPLIFIER AND LOW SPEED SWITCHING APPLICATIONS

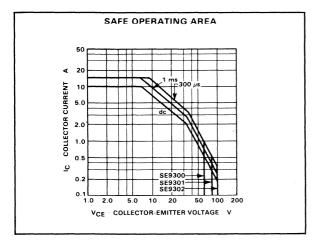
- 70 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- COMPLEMENT SE9400, SE9401, SE9402

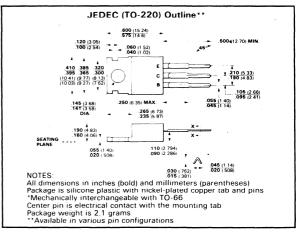
ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum \	/oltages and Currents	SE9300	SE9301	SE9302
v_{CEO}	Collector to Emitter Voltage	60 V	80 V	100 V
V _{CBO}	Collector to Base Voltage	60 V	80 V	100 V
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
lC .	Continuous Collector Current	- 10 A	10 A	10 A
Maximum F	Power Dissipation			

Ma


Total Dissipation @ 25°C Case Temperature PD 70 W Derate Linearly from 25°C 0.56 W/°C


Maximum Temperatures

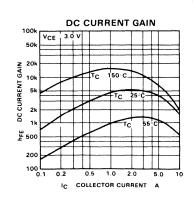

 T_{J}, T_{sta} Storage and Operation Junction Temperatures

Thermal Characteristics

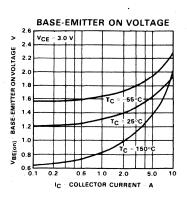
 $R_{\theta,IC}$ Thermal Resistance, Junction to Case

-65°C to +150°C

1.79°C/W

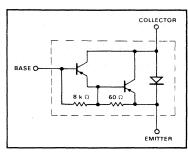

FAIRCHILD • SE9300 • SE9301 • SE9302

FLECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)


SYMBOL	CHARACTERISTIC	SE9	300 •	SES	301	SES	302	UNITS	TEST CONDITIONS	
STIMBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	7EST CONDITIONS	
F CHARACTE	RISTICS									
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80		100		V	IC = 100 mA, IB = 0	
¹ CEO	Collector Cutoff Current		0.5		0.5		0.5	mA mA mA	V _{CE} = 30 V, I _B = 0 V _{CE} = 40 V, I _B = 0 V _{CE} = 50 V, I _B = 0	
СВО	Collector Cutoff Current		0.2		0.2		0.2	mA mA mA;	V _{CB} = 30 V, I _E = 0 V _{CB} = 40 V, I _E = 0 V _{CB} = 50 V, I _E = 0	
^I EBO	Emitter Cutoff Current	1.	4.0		4.0		4.0	mA	V _{EB} = 5.0 V, I _C = 0	
CHARACTER	RISTICS				***************************************		***************************************			
hFE	DC Current Gain (Note 1)	750 1000 100		750 1000 100		750 1000 100	-		I _C = 1.0 A, V _{CE} = 3.0 \ I _C = 4.0 A, V _{CE} = 3.0 \ I _C = 7.5 A, V _{CE} = 3.0 \	
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		2.0 2.5		2.0 2.5		2.0 2.5	V	I _C = 4.0 A, I _B = 16 mA I _C = 7.5 A, I _B = 150 mA	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		2.5 3.0		2.5 3.0		2.5 3.0	V	I _C = 4.0 A, V _{CE} = 3.0 \ I _C = 7.5 A, V _{CE} = 3.0 \	
NAMIC CHAR	ACTERISTICS									
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	1.0		1.0		1.0			I _C = 4.0 A, V _{CE} = 3.0 V f = 1.0 MHz	

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

TYPICAL ELECTRICAL CHARACTERISTICS


POWER DARLINGTON

NPN SILICON

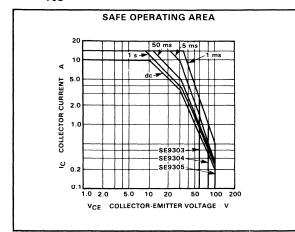
SE9303 SE9304 SE9305

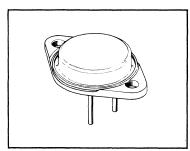
DESIGNED FOR GENERAL PURPOSE AMPLIFIER AND LOW SPEED SWITCHING APPLICATIONS

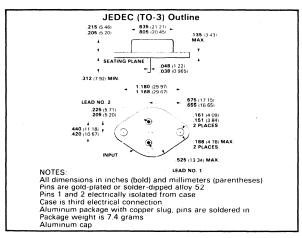
- 100 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 1000 MINIMUM hee @ 4 A
- COMPLEMENT SE9403, SE9404, SE9405

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum \	Voltages and Currents	SE9303	SE9304	SE9305
VCEO	Collector to Emitter Voltage	60 V	80 V	100 V
VCBO	Collector to Base Voltage	60 V	80 V	100 V
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
lC	Continuous Collector Current	10 A	10 A	10 A
Maximum I	Power Dissination			


Total Dissipation @ 25°C Case Temperature Derate Linearly from 25°C


Maximum Temperatures


 T_J , T_{stg} Storage and Operation Junction Temperatures

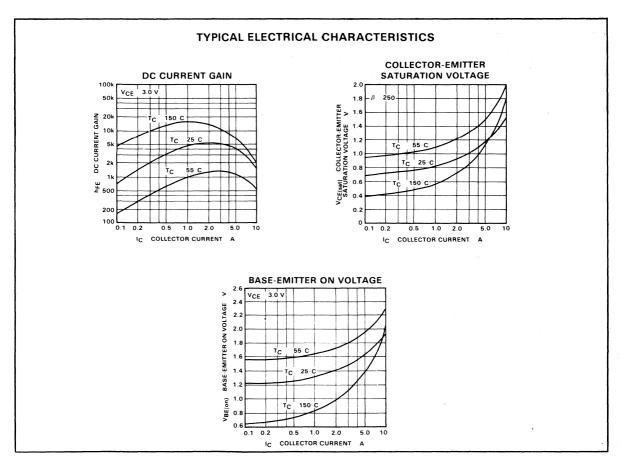
Thermal Characteristics

 $R_{\theta,JC}$ Thermal Resistance, Junction to Case

100 W

0.57 W/°C

1.75°C/W


-65°C to +200°C

FAIRCHILD • SE9303 • SE9304 • SE9305

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	SE	9303	SE9	304	SE9	305	UNITS	TEST CONDITIONS
STIMBOL	CHANACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	1EST CONDITIONS
FF CHARACTE	RISTICS								
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80		100		٧	I _C = 100 mA, I _B = 0
CEO	Collector Cutoff Current		0.5		0.5		0.5	mA mA mA	V _{CE} = 30 V, I _B = 0 V _{CE} = 40 V, I _B = 0 V _{CE} = 50 V, I _B = 0
ICBO	Collector Cutoff Current		0.2		0.2		0.2	mA mA mA	V _{CB} = 30 V, I _E = 0 V _{CB} = 40 V, I _E = 0 V _{CB} = 50 V, I _E = 0
IEBO	Emitter Cutoff Current		4.0		4.0		4.0	mA	V _{EB} = 5.0 V, I _C = 0
N CHARACTER	RISTICS			- t		·/			····
hFE	DC Current Gain (Note 1)	750 1000 100		750 1000 100		750 1000 100			I _C = 1.0 A, V _{CE} = 3.0 V I _C = 4.0 A, V _{CE} = 3.0 V I _C = 7.5 A, V _{CE} = 3.0 V
VCE(sat)	Collector-Emitter Saturation Voltage (Note 1)		2.0 2.5		2.0 2.5		2.0 2.5	V V	I _C = 4.0 A, I _B = 16 mA I _C = 7.5 A, I _B = 150 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		2.5 3.0		2.5 3.0		2.5 3.0	V V	I _C = 4.0 A, V _{CE} = 3.0 V I _C = 7.5 A, V _{CE} = 3.0 V
YNAMIC CHAP	RACTERISTICS			***************************************		-			
Infel	Magnitude of Common Emitter Small Signal Current Gain	1.0		1.0		1.0		-	I _C = 4.0 A, V _{CE} = 3.0 V f = 1.0 MHz

NOTE: 1. Pulse conditions: Length $300 \,\mu\text{s}$, Duty Cycle 2%.

SE9331

NPN SILICON

GENERAL PURPOSE HIGH VOLTAGE POWER DEVICE

- 20 W DISSIPATION AT 25°C CASE
- 1.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 300 V MINIMUM VCEO

ABSOLUTE MAXIMUM RATINGS (Note 1)

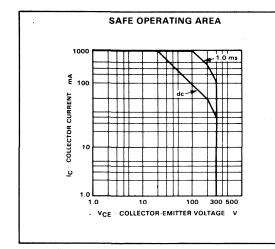
Maximum	Voltage	and Curren	te

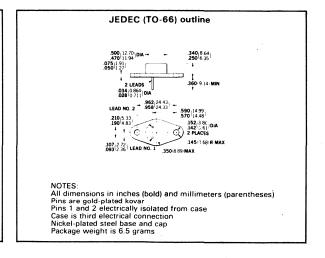
VCEO Collector to Emitter Voltage
VCBO Collector to Base Voltage
VEBO Emitter to Base Voltage
IC Continuous Collector Current
IR Continuous Base Current

Maximum Power Dissipation

P_D Total Dissipation @ 25°C Case Temperature

Derate Linearly from 25°C

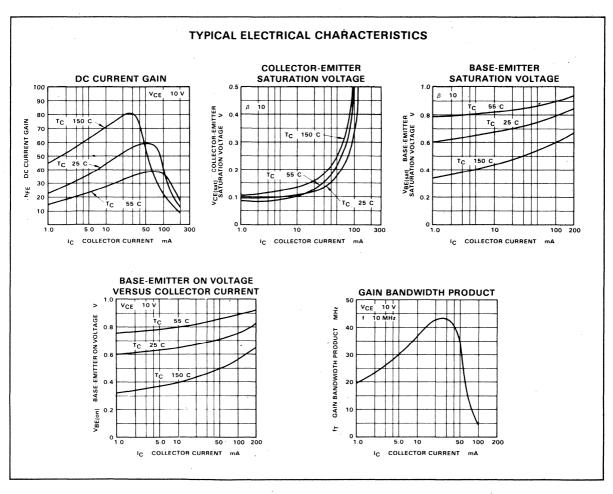

Maximum Temperatures


T_J, T_{stq} Storage and Operation Junction Temperatures

Thermal Characteristics

 $R_{ heta JC}$ Thermal Resistance, Junction to Case

300 V 300 V 6.0 V 1.0 A 250 mA 20 W 0.114 W/°C -65°C to +175°C

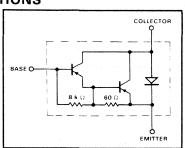


FAIRCHILD • SE9331

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

		SES	9331		
SYMBOL	CHARACTERISTIC	MIN	MAX	UNIT	TEST CONDITIONS
FF CHARACT	ERISTICS			,	
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	300		, V	I _C = 5.0 mA, I _B = 0
VEBO	Emitter-Base Breakdown Voltage	6.0		V	I _E = 0.01 mA, I _C = 0
CEO	Collector Cutoff Current		0.1	mA	V _{CE} = 300 V, I _B = 0
СВО	Collector Cutoff Current		0.01 0.5	mA μA	V _{CB} = 300 V, I _E = 0 V _{CB} = 250 V, I _E = 0
N CHARACTE	ERISTICS				
hFE	DC Current Gain (Note 1)	30 30	250		I _C = 50 mA, V _{CE} = 10 V I _C = 100 mA, V _{CE} = 10 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		2.5	. V	I _C = 100 mA, I _B = 10 mA
VBE(sat)	Base-Emitter Saturation Voltage (Note 1)		1.5	V	I _C = 100 mA, I _B = 10 mA
VBE(on)	Base-Emitter "On" Voltage (Note 1)		1.5	V	I _C = 100 mA, V _{CE} = 10 V
YNAMIC CHA	RACTERISTICS				
f⊤	Current-Gain-Bandwidth Product	10		MHz	I _C = 50 mA, V _{CE} = 10 V, f = 10 MHz
Cob	Output Capacitance		20	рF	V _{CB} = 100 V, I _E = 0, f = 1.0 MHz

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.


POWER DARLINGTON

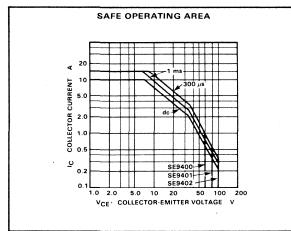
PNP SILICON

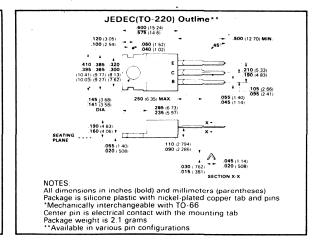
SE9400 SE9401 SE9402

DESIGNED FOR GENERAL PURPOSE AMPLIFIER AND LOW SPEED SWITCHING APPLICATIONS

- 70 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 1000 MINIMUM hFE @ 4 A
- COMPLEMENT SE9300, SE9301, SE9302

ABSOLUTE MAXIMUM RATINGS (Note 1)

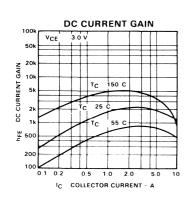

Maximum \	oltages and Currents	\$E9400
VCEO	Collector to Emitter Voltage	-60 V
VCBO	Collector to Base Voltage	-60 V
VEBO	Emitter to Base Voltage	-5.0 V
lC	Continuous Collector Current	10 A
Maximum P	ower Dissipation	
PD	Total Dissipation @ 25°C Case Temp	erature
_	Derate Linearly from 25°C	
Maximum T	emperatures	
T_J, T_stg	Storage and Operation Junction Tem	peratures
Thermal Čh	aracteristics	
$R_{ heta}JC$	Thermal Resistance, Junction to Cas	e

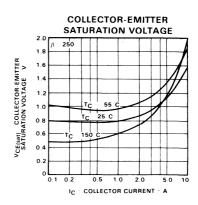

SE9401 SE9402
-80 V -100 V
-80 V -100 V
-5.0 V -5.0 V
10 A 10 A

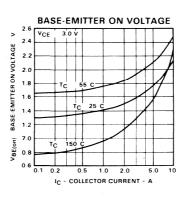
70 W
0.56 W/°C

-65°C to +150°C

1.79°C/W

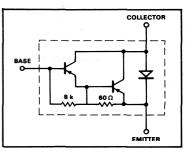

FAIRCHILD • SE9400 • SE9401 • SE9402


ELECTRICAL CHARACTERISTICS (25. C. Case Temperature unless otherwise noted)


SYMBOL	CHARACTERISTIC	SE	9400	SES	401	SES	402	UNITS	TEST CONDITIONS	
STIMBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS	
FF CHARACTE	RISTICS									
V _{CEO(sus)}	Collector Emitter Sustaining Voltage (Note 1)	-60		80		-100		V	I _C = 100 mA, I _B = 0	
CEO	Collector Cutoff Current		0.5		0.5		0.5	mA mA mA	V _{CE} = -30 V, I _B = 0 V _{CE} = -40 V, I _B = 0 V _{CE} = -50 V, I _B = 0	
ICBO	Collector Cutoff Current		0.2		0.2		0.2	mA mA mA	V _{CB} = -30 V, I _E = 0 V _{CB} = -40 V, I _E = 0 V _{CB} = -50 V, I _E = 0	
I _{EBO}	Emitter Cutoff Current		4.0		4.0		4.0	mA	V _{EB} = -5.0 V, I _C = 0	
N CHARACTER	RISTICS		•							
hFE	DC Current Gain (Note 1)	750 1000 100		750 1000 100		750 1000 100			I _C = 1.0 A, V _{CE} = -3.0 I _C = 4.0 A, V _{CE} = -3.0 I _C = 7.5 A, V _{CE} = -3.0	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-2.0 -2.5		-2.0 -2.5		-2.0 -2.5	V	I _C 4.0 A, I _B = 16 mA	
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-2.5 -3.0		-2.5 -3.0		-2.5 -3.0	V V	I _C · 4.0 A, V _{CE} · -3.0 I _C · 7.5 A, V _{CE} · -3.0	
YNAMIC CHAF	RACTERISTICS									
[h] _{fe} [Magnitude of Common Emitter Small Signal Current Gain	1.0		1.0		1.0			I _C 4.0 A, V _{CE} 3.0 f 1.0 MHz	

NOTE: 1. Pulse conditions: Length $300 \mu s$, Duty Cycle 2%.

TYPICAL ELECTRICAL CHARACTERISTICS


POWER DARLINGTON

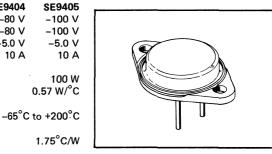
PNP SILICON

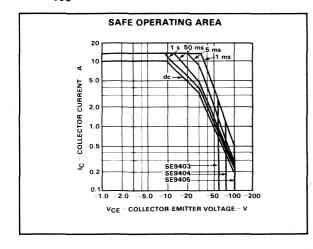
SE9403 SE9404 SE9405

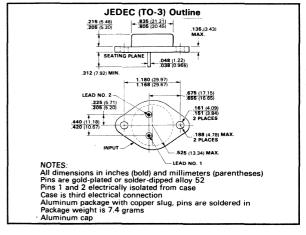
DESIGNED FOR GENERAL PURPOSE AMPLIFIER AND LOW SPEED SWITCHING APPLICATIONS

- 100 W DISSIPATION AT 25°C CASE
- 10 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 1000 MINIMUM hFE @ 4 A
- COMPLEMENT SE9303, SE9304, SE9305

ABSOLUTE MAXIMUM RATINGS (Note 1)

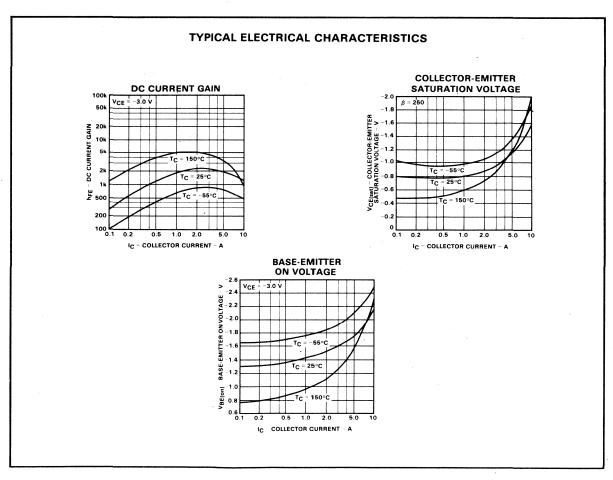

Maximum	Voltages and Currents	SE9403	SE9404	SE9405
VCEO	Collector to Emitter Voltage	-60 V	−80 V	-100 V
VCBO	Collector to Base Voltage	-60 V	-80 V	-100 V
VEBO	Emitter to Base Voltage	-5.0 V	-5.0 V	-5.0 V
lC C	Continuous Collector Current	10 A	10 A	10 A
Maximum	Power Dissipation			
PD	Total Dissipation @ 25°C Case Tem	perature		100 W


Derate Linearly from 25 °C


Maximum Temperatures

 $T_{J}\text{,}T_{stg} \quad \text{Storage and Operation Junction Temperatures} \\ \textbf{Thermal Characteristics}$

R_{θJC} Thermal Resistance, Junction to Case



FAIRCHILD • SE9403 • SE9404 • SE9405

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	SES	9403	SES	9404	SES	405	UNITS	TEST CONDITIONS
01111100	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
FF CHARACT	ERISTICS					1,41 (4.1)			
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-60		-80		-100		V	I _C = 100 mA, I _B = 0
¹ CEO	Collector Cutoff Current		0.5		0.5		0.5	mA mA mA	V _{CE} = -30 V, I _B = 0 V _{CE} = -40 V, I _B = 0 V _{CE} = -50 V, I _B = 0
СВО	Collector Cutoff Current		0.2		0.2		0.2	mA mA mA	$V_{CB} = -30 \text{ V, } I_{E} = 0$ $V_{CB} = -40 \text{ V, } I_{E} = 0$ $V_{CB} = -50 \text{ V, } I_{E} = 0$
^I EBO	Emitter Cutoff Current		4.0		4.0		4.0	mA	V _{EB} = -5.0 V, I _C = 0
N CHARACTE	RISTICS		:						•
hFE	DC Current Gain (Note 1)	750 1000 100		750 1000 100		750 1000 100			I _C = 1.0 A, V _{CE} = -3.0 V I _C = 4.0 A, V _{CE} = -3.0 V I _C = 7.5 A, V _{CE} = -3.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-2.0 -2.5		-2.0 -2.5		-2.0 -2.5	V V	I _C = 4.0 A, I _B = 16 mA I _C = 7.5 A, I _B = 150 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-2.5 -3.0		-2.5 -3.0		-2.5 -3.0	V V	I _C = 4.0 A, V _{CE} = -3.0 V I _C = 7.5 A, V _{CE} = -3.0 V
YNAMIC CHAP	RACTERISTICS	,							
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	1.0		1.0		1.0			I _C = 4.0 A, V _{CE} = -3.0 \ f = 1.0 MHz

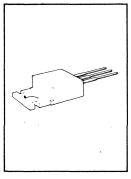
NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

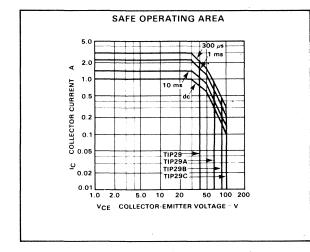
NPN SILICON

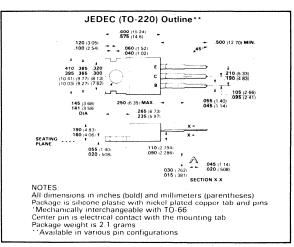
TIP29 TIP29A TIP29B TIP29C

DESIGNED FOR POWER AMPLIFIER AND HIGH SPEED SWITCHING APPLICATIONS

- 30 W DISSIPATION AT 25°C CASE
- 1 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 15 TO 75 her AT IC 1 A
- COMPLEMENTS TIP30, TIP30A, TIP30B, TIP30C


ABSOLUTE MAXIMUM RATINGS (Note 1)


Maximum	Voltages and Currents	TIP29	TIP29A	TIP29B	TIP29C
VCEO	Collector to Emitter Voltage	40 V	60 V	80 V	100 V
VCBO	Collector to Base Voltage	40 V	60 V	. 80 V	100 V
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V	5.0 V
l _C	Continuous Collector Current	1.0 A	1.0 A	·1.0 A	1.0 A
I _C	Peak Collector Current	3.0 A	3.0 A	3.0 A	3.0 A
I _B	Continuous Base Current	0.4 A	0.4 A	0.4 A	0.4 A
Maximum	Power Dissipation				
P_{D}	Total Dissipation @ 25°C Case Temp	perature			30 W
_	Derate Linearly from 25°C			(0.24 W/°C


Derate Linearly from 25°C **Maximum Temperatures**

 T_{J}, T_{sta} Storage and Operation Junction Temperatures Thermal Characteristics

 $R_{\theta}JC$ Thermal Resistance, Junction to Case

-65°C to +150°C

4.16°C/W

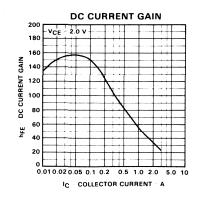
FAIRCHILD • TIP29 • TIP29A • TIP29B • TIP29C

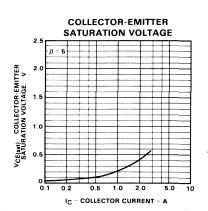
TIP29A TIP29B TIP29C

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

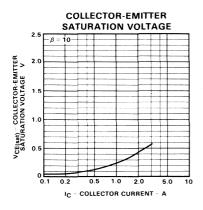
TIP29

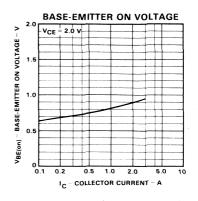
SYMBOL	CHARACTERISTIC			L						1 1	TECT CONDITIONS	
31 WIBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
F CHARAC	TERISTICS											
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		100		V	I _C = 30 mA, I _B = 0	
CEO	Collector Cutoff Current		0.3	-	0.3		0.3		0.3	mA mA	$V_{CE} = 30 \text{ V, } I_B = 0$ $V_{CE} = 60 \text{ V, } I_B = 0$	
CES	Collector Reverse Current		0.2		0.2		0.2		0.2	mA mA mA mA	V _{CE} = 40 V, V _{BE} = 0 V _{CE} = 60 V, V _{BE} = 0 V _{CE} = 80 V, V _{BE} = 0 V _{CE} = 100 V, V _{BE} = 0	
ГЕВО	Emitter Cutoff Current		1.0		1.0		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0	
CHARACT	ERISTICS											
h _{FE}	DC Current Gain (Note 1)	40 15	75	40 15	75	40 15	75	40 15	75		I _C = 0.2 A, V _{CE} = 4.0 V I _C = 1.0 A, V _{CE} = 4.0 V	

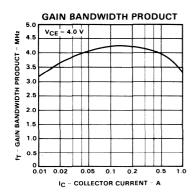

h _{FE}	DC Current Gain (Note 1)	40 15	75	40 15	75	40 15	75	40 15	75		$I_C = 0.2 \text{ A, V}_{CE} = 4.0 \text{ V}$ $I_C = 1.0 \text{ A, V}_{CE} = 4.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		0.7		0.7		0.7		0.7	V	I _C = 1.0 A, I _B = 125 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.3		1.3		1.3		1.3	٧	I _C = 1.0 A, V _{CE} = 4.0 V

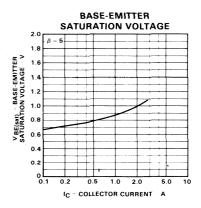

DYNAMIC CHARACTERISTICS

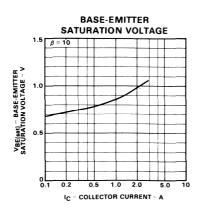
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	3.0	3.0	3.0	3.0		I _C = 0.2 A, V _{CE} = 10 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	20	20	20	20		I _C = 0.2 A, V _{CE} = 10V, f = 1.0 kHz


NOTE: 1. Pulse conditions: Length = $300 \mu s$, Duty Cycle = 2%.








TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd)

PNP SILICON

TIP30 TIPSOA TIP30B TIP30C

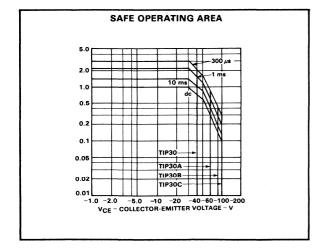
DESIGNED FOR POWER AMPLIFIER AND HIGH SPEED SWITCHING APPLICATIONS

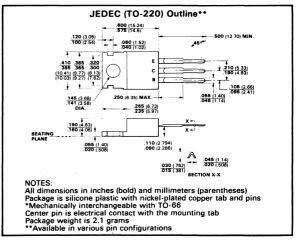
- 30 W DISSIPATION AT 25°C
- 1 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 15 TO 75 hFE AT IC 1 A
- COMPLEMENTS TIP29, TIP29A, TIP29B, TIP29C

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum \	Voltages and Currents	TIP30	TIP30A	TIP30B	TIP30C
VCEO	Collector to Emitter Voltage	-40° ∨	-60 V	-80 V	-100 V
VCBO	Collector to Base Voltage	-40 V	-60 V	–80 V	–100 V
VEBO	Emitter to Base Voltage	-5.0 V	-5.0 V	-5.0 V	-5.0 V
IC	Continuous Collector Current	1.0 A	1.0 A	1.0 A	1.0 A
١č	Peak Collector Current	3.0 A	3.0 A	3.0 A	3.0 A
ΙΒ̈́	Continuous Base Current	0.4 A	0.4 A	0.4 A	0.4 A
Maximum (Power Dissipation				
Pn	Total Dissipation @ 25°C Case Temp	perature			30 W

Total Dissipation @ 25°C Case Temperature PD


Derate Linearly from 25°C


Maximum Temperatures

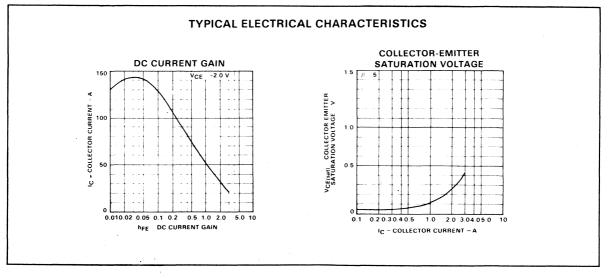
Storage and Operation Junction Temperatures T_{J} , T_{sta}

Thermal Characteristics

Thermal Resistance, Junction to Case $R_{\theta,JC}$

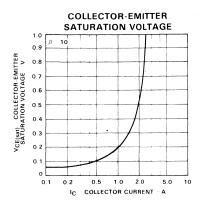
0.24 W/°C

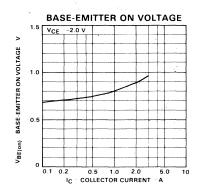
4.16°C/W

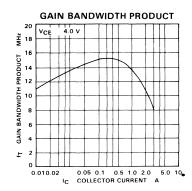

-65°C to +150°C

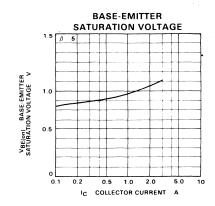
FAIRCHILD • TIP30 • TIP30A • TIP30B • TIP30C

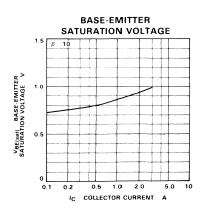
ELECTRICAL CHARACTERISTICS (25 C Case Temperature unless otherwise noted)


SYMBOL	CHARACTERISTIC	T1	P30	TIP	30A	TIP	30B	TIP	30C		TF0T 001151T10110
STIMBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
FF CHARAC	TERISTICS					-				<u> </u>	
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-40		-60		-80		-100		V	I _C 30 mA, I _B 0
CEO	Collector Cutoff Current		0.3		0.3		0.3		0.3	mA mA	V _{CE} 30 V, I _B 0 V _{CE} 60 V, I _B 0
CES	Collector Reverse Current		0.2		0.2		0.2		0.2	mA mA mA	V _{CE} -40 V. V _{BE} 0 V _{CE} -60 V. V _{BE} 0 V _{CE} -80 V. V _{BE} 0 V _{CE} -100 V. V _{BE} 0
¹ EBO	Emitter Cutoff Current		1.0		1.0		1.0		1.0	mA	V _{EB} -5.0 V, I _C 0
N CHARACT	ERISTICS										
h _{FE}	DC Current Gain (Note 1)	40 15	75	40 15	75	40 15	75	40 15	75		I _C 0.2 A, V _{CE} -4.0 V I _C 1.0 A, V _{CE} -4.0 V
V _{CE (sat)}	Collector-Emitter Saturation Voltage (Note 1)		-0.7		-0.7		0.7		-0.7	V	I _C 1.0 A, I _B 125 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.3		-1.3		-1.3		-1.3	٧	I _C 1.0 A, V _{CE} -4.0 V
YNAMIC CH	ARACTERISTICS										
ln _{fe} l	Magnitude of Common Emitter Small Signal Current Gain	3.0		3.0		3.0		3.0			I _C 0.2 A, V _{CE} -10 V, 1 1.0 MHz
h _{fe}	Small Signal Current Gain	20		20		. 20		20			i _C 0.2 A, V _{CE} -10V, f 1.0 kHz


NOTE: 1. Pulse conditions: Length 300 µs, Duty Cycle 2%.




FAIRCHILD • TIP30 • TIP30A • TIP30B • TIP30C


TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd)

NPN SILICON

TIP31 TIP31A TIP31B TIP31C

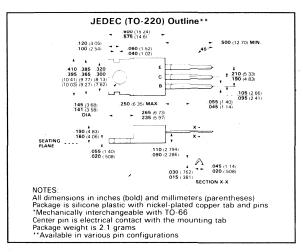
DESIGNED FOR POWER AMPLIFIER AND HIGH SPEED SWITCHING APPLICATIONS

- 40 W DISSIPATION AT 25°C CASE
- 3.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 10 TO 50 her AT IC 3.0 A
- COMPLEMENTS TIP32, TIP32A, TIP32B, TIP32C

ABSOLUTE MAXIMUM RATINGS (Note 1)

 $R_{\theta}JC$

Maximum V	oltages and Currents	TIP31	TIP31A	TIP31B	TIP31C
VCEO	Collector to Emitter Voltage	40 V	60 V	80 V	100 V
Vсво	Collector to Base Voltage	40 V	60 V	80 V	100 V
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V	5.0 V
IC	Continuous Collector Current	3.0 A	3.0 A	3.0 A	3.0 A
lc '	Peak Collector Current	5.0 A	5.0 A	5.0 A	5.0 A
I _B	Continuous Base Current	1.0 A	1.0 A	1.0 A	1.0 A
Maximum P	ower Dissipation				
P_{D}	Total Dissipation @ 25°C Case Temperature				40 W
	Derate Linearly from 25°C			. 0	.32 W/°C
Maximum T	emperatures				
TJ, T _{stq}	Storage and Operation Junction Temperatures			-65° C to	o +150°C
Thermal Cha	aracteristics				

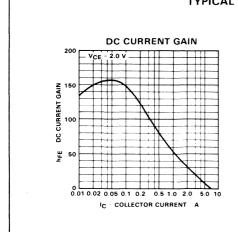

100 200

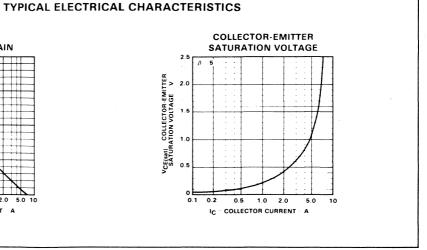
SAFE OPERATING AREA
5.0 10 ms
3.0 2.0 4 300 µs
0.5 O.5
0.5 0.0 0.2 0.1 0.1 100 0.05
0.1 TIP31
O 02 TIP31B

5.0 10 20

VCE COLLECTOR-EMITTER VOLTAGE V

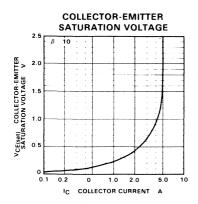
Thermal Resistance, Junction to Case

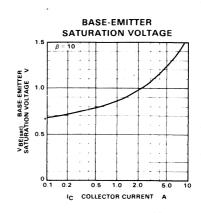


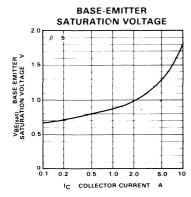

100 V 100 V 5.0 V 3.0 A 5.0 A 1.0 A 40 W 0.32 W/°C to +150°C 3.12°C/W

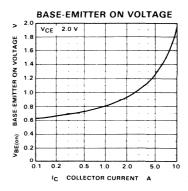
FAIRCHILD • TIP31 • TIP31A • TIP31B • TIP31C

SYMBOL	CHARACTERISTIC	TI	P31	TIF	231A	TIP	31B	TIP	31C		TEST
STIMBUL		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
FF CHARACT	ERISTICS										
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60	-	80		100	-	V	I _C = 30 mA,
CEO	Collector Cutoff Current		0.3		0.3		0.3		0.3	mA mA	V _{CE} = 30 V, I _B = 0 V _{CE} = 60 V,
							0.3		0.3	"A	1B = 0
			0.2							mA	V _{CE} = 40 V, V _{BE} = 0
Lana	0.11.				0.2					mA	V _{CE} = 60 V, V _{BE} = 0
ICES	Collector Reverse Current						0.2			mA	V _{CE} = 80 V, V _{BF} = 0
									0.2	mA	V _{CE} = 100 V, V _{BE} = 0
^I EBO	Emitter Cutoff Current		1.0		1.0		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0
N CHARACT	RISTICS										
		25		25		25		25			I _C = 1.0 A, V _{CE} = 4.0 V
hFE	DC Current Gain (Note 1	10	50	10	50	10	50	.10	50		I _C = 3.0 A, V _{CE} = 4.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.2		1.2		1.2		1.2	V	I _C = 3.0 A,
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.8		1.8		1.8		1.8	٧	I _C = 3.0 A, V _{CE} = 4.0 V
YNAMIC CHA	RACTERISTICS	7									
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	3.0*		3.0		3.0		3.0			I _C = 0.5 V, V _{CE} = 10 V,
											f = 1.0 MHz I _C = 0.5 A,
h _{fe}	Small Signal Current Gain	20		20		20		20			V _{CE} = 10 V, f = 1.0 kHz


NOTE: 1. Pulse conditions: Length $300 \mu s$, Duty Cycle $2^{\circ}o$.



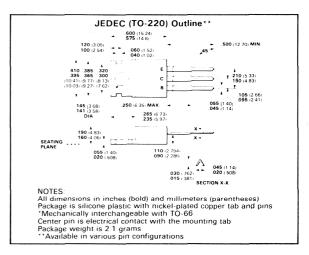



FAIRCHILD • TIP31 • TIP31A • TIP31B • TIP31C


TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd)

PNP SILICON

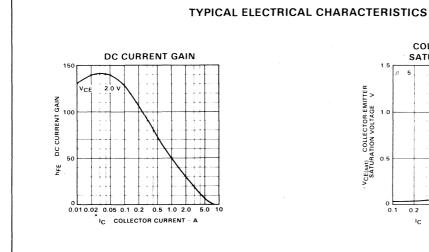
TIP32A TIP32A TIP32B TIP32C

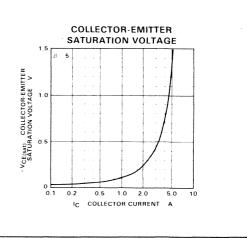

DESIGNED FOR POWER AMPLIFIER AND HIGH SPEED SWITCHING APPLICATIONS

- 40 W DISSIPATION AT 25°C CASE
- 3.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 10 TO 50 hee AT IC 3.0 A
- COMPLEMENT TIP31, TIP31A, TIP31B, TIP31C

ABSOLUTE MAXIMUM RATINGS (Note 1)

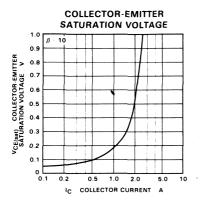
Αt	SOLUTE INIT	AXIIVIOIVI RATINGS (Note 1)					
	Maximum V	oltages and Currents	TIP32	TIP32A	TIP32B	TIP32C	1
	VCEO	Collector to Emitter Voltage	-40 V	-60 V	-80 V	-100 V	
	v_{CBO}	Collector to Base Voltage	-40 V	-60 V	−80 V	-100 V	
	v_{EBO}	Emitter to Base Voltage	–5.0 V	-5.0 V	-5.0 V	−5.0 V	
	1C	Continuous Collector Current	3.0 A	3.0 A	3.0 A	3.0 A	
	IC	Peak Collector Current	5.0 A	5.0 A	5.0 A	5.0 A	
	۱ _B	Continuous Base Current	1.0 A	1.0 A	1.0 A	1.0 A	
	Maximum Po	ower Dissipation					
	P_{D}	Total Dissipation @ 25°C Case Temperature				40 W	
		Derate Linearly from 25°C			0	.32 W/°C	1
	Maximum T	emperatures				_	
		Storage and Operation Junction Temperatures			-65° C to	o +150°C	
	Thermal Cha	practeristics					
	$R_{ heta}JC$	Thermal Resistance, Junction to Case			3	3.12°C/W	

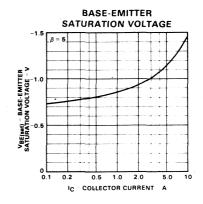

	5.0
	3.0 1 ms
∢	300 μs
	10 ms dc
REN	1.0 0.5 0.2 0.1 TIP32
JUR.	0.5
) H C	0.2
CTC	
, TE	0.1
ა,	0.05 TIP32 > TIP32A
ي	TIP32B → → →
- (0.02 TIP32C
•	0.01
	VCE COLLECTOR EMITTER VOLTAGE V

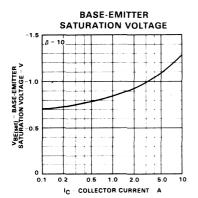


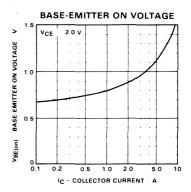
FAIRCHILD • TIP32 • TIP32A • TIP32B • TIP32C

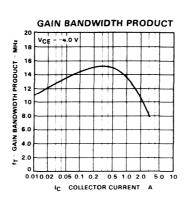
SYMBOL	CHARACTERISTIC	TII	P 32	TIP	32A	TIP 32B		TIP 32C			TEST
SYMBOL		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
FF CHARACT	ERISTICS	100									kanatai ja maaja maaja kataa
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-40		-60		-80		-100		V	I _C = 30 mA
ICEO	Collector Cutoff Current		0.3		0.3					mA	V _{CE} = -30 V, I _B = 0
							0.3		0.3	mA	$V_{CE} = -60 \text{ V},$ $I_{B} = 0$
			0.2						:	mA	V _{CE} = -40 V, V _{BF} = 0
					0.2					mA	V _{CE} = -60 V, V _{BF} = 0
CES	Collector Reverse Current		2	-			0.2			mA	V _{CE} = -80 V,
		- 1			. *			gar ta s	0.2	mA	V _{CE} = -100 V, V _{BE} = 0
IEBO	Emitter Cutoff Current		1.0		1.0		1.0		1.0	mA	V _{EB} = -5.0 V,
N CHARACTE	RISTICS	·	-					h			L
h _{FE}	DC Current Gain (Note 1)	25		25		25		25			I _C = 1.0 A, V _{CE} = -4.0 V
"FE	DC Current Gain (Note 1)	10	50	10	50	10	50	10	50		I _C = 3.0 A, V _{CE} = -4.0 A
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-1.2		-1.2		-1.2		-1.2	V	I _C = 3.0 A, I _B = 375 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-1.8		-1.8		-1.8		-1.8	V	I _C = 3.0 A, V _{CE} = -4.0 V
YNAMIC CHA	RACTERISTICS							L			1
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	3.0		3.0		3.0		3.0			$I_C = 0.5 \text{ A},$ $V_{CE} = -10 \text{ V},$ $f = 1.0 \text{ MHz}$
h _{fe}	Small Signal Current Gain	20		20		20		20			I _C = 0.5 A, V _{CE} = -10 V, f = 1.0 kHz


NOTE: 1. Pulse conditions: Length 300 μ s, Duty Cycle

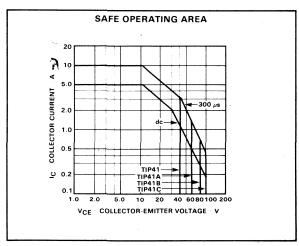


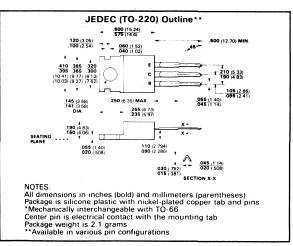



FAIRCHILD • TIP32 • TIP32A • TIP32B • TIP32C


TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd)

NPN SILICON

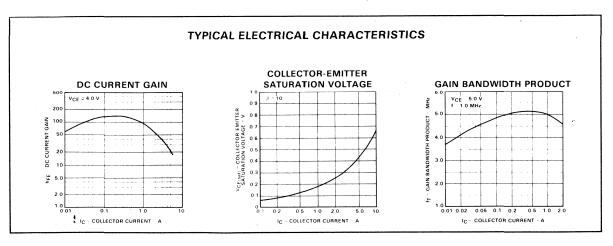

TIP41A TIP41B TIP41C


DESIGNED FOR POWER AMPLIFIER AND HIGH SPEED SWITCHING APPLICATIONS

- 65 W DISSIPATION AT 25°C
- 6.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 3.0 MHz MINIMUM fT
- 0.7 s TYPICAL toff
- COMPLEMENT TO TIP42 SERIES

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum	Voltages and Currents	TIP41	TIP41A	TIP41B	TIP41C	
VCEO	Collector to Emitter Voltage	40 V	60 V	80 V	100 V	
VCBO	Collector to Base Voltage	40 V	60 V	. 80 V	100 V	
V_{EBO}	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V	5.0 V	
IC	Continuous Collector Current	6.0 A	6.0 A	6.0 A	6.0 A	
lC .	Peak Collector Current	10 A	10 A	10 A	10 A	
۱B	Continuous Base Current	3.0 A	3.0 A	3.0 A	3.0 A	
Maximum	Power Dissipation					
P_{D}	Total Dissipation @ 25°C Case Temperature				65 W	1 Cin.
	Derate Linearly from 25°C			0	.52 W/°C	ت ت
Maximum	Temperatures					
TJ, T _{sti}	g Storage and Operation Junction Temperatures			-65° C to	+150°C	
Thermal C	haracteristics					
$R_{ heta}JC$	Thermal Resistance, Junction to Case			1	.92°C/W	
Τp	Maximum Pin Temperature for Soldering					
	Purposes: 1/8" from Case for 5 seconds				260°C	



FAIRCHILD • TIP41 • TIP41A • TIP41B • TIP41C

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

CVMDOL	CHARACTERISTIC	TI	P41	TIP	41A	TIP	41B	TIP	41C		TEST
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
OFF CHAR	ACTERISTICS										
VCEO(sus)	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		100		>	I _C = 30 mA, I _B = 0
^I CEO	Collector Cutoff Current		0.7		0.7		0.7	i u i	0.7	mA mA	V _{CE} = 30 V, I _B = 0 V _{CE} = 60 V, I _B = 0
^I CES	Collector Reverse Current		0.4		0.4		0.4			mA mA	VCE = 40 V, VBE = 0 VCE = 60 V, VBE = 0 VCE = 80 V, VBE = 0
									0.4	mA	V _{CE} = 100 V, V _{BE} = 0
I _{EBO}	Emitter Cutoff Current		1.0		1.0		1.0		1.0	mA	V _{EB} = 5.0 V,
ON CHARA	CTERISTICS										
h _{FE}	DC Current Gain (Note 1)	30 15	75	30 15	75	30 15	75	30 15	75		I _C = 0.3 A, V _{CE} = 4.0 V I _C = 3.0 A, V _{CE} = 4.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		1.5		1.5		1.5		1.5	V	I _C = 6.0 A, I _B = 0.6 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		2.0		2.0		2.0		2.0	V	I _C = 6.0 A, V _{CE} = 4.0 V
DYNAMIC C	CHARACTERISTICS										
h _{fe}	Magnitude of Common Emitter Small Signal Short Circuit Forward Current Transfer Ratio	3.0		3.0		3.0		3.0			I _C = 0.5 A. V _{CE} = 10 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	20		20		20		20			I _C = 0.5 A, V _{CE} = 10 V, f = 1.0 kHz

NOTE: 1. Pulse conditions: Length 300 \(\mu \text{s}, \text{ Duty Cycle} \) 2%.

PNP SILICON

TIP 42 **TIP 42A TIP 42B TIP 42C**

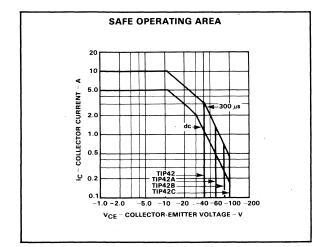
DESIGNED FOR POWER AMPLIFIER AND HIGH SPEED SWITCHING APPLICATIONS

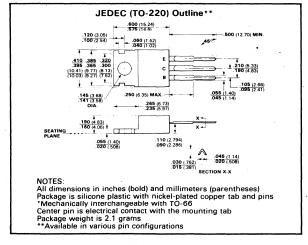
- 65 W DISSIPATION AT 25°C CASE
- 6.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 3.0 MHz MINIMUM fT
- 0.7 s TYPICAL toff
- COMPLEMENT TO TIP41 SERIES

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum \	oltages and Currents	TIP42	TIP42A	TIP42B	TIP42C
VCEO	Collector to Emitter Voltage	-40 V	-60 V	80 V	-100 V
VCBO	Collector to Base Voltage	-40 V	-60 V	-80 V	-100 V
VFBO	Emitter to Base Voltage	–5.0 V	-5.0 V	-5.0 V	-5.0 V
lc .	Continuous Collector Current	6.0 A	6.0 A	6.0 A	6.0 A
İĊ	Peak Collector Current	10 A	10 A	10 A	10 A
ΙΒ	Continuous Base Current	3.0 A	3.0 A	3.0 A	3.0 A
Maximum F	Power Dissipation				
P_{D}	Total Dissipation @ 25°C Case Temperature				65 W
_	Derate Linearly from 25°C			0	.52 W/°C

Derate Linearly from 25°C


Maximum Temperatures

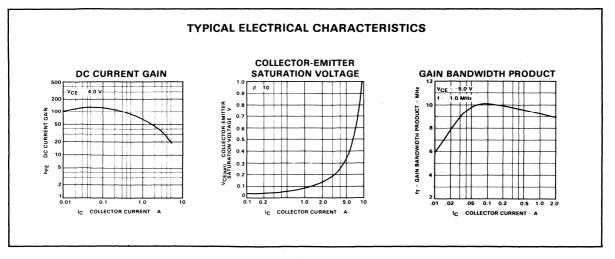

 $T_{J},\,T_{stg}\quad \text{Storage and Operation Junction Temperatures} \\ \textbf{Thermal Characteristics}$

 $R_{\theta}JC$ Thermal Resistance, Junction to Case

Τp Maximum Pin Temperature for Soldering

Purposes: 1/8" from Case for 5 seconds

 -65° C to $+150^{\circ}$ C


1.92°C/W

260°C

FAIRCHILD • TIP42 • TIP42A • TIP42B • TIP42C

SYMBOL	CHARACTERISTIC	TI	P 42	TIP	42A	TIP	42B	TIP	42C	UNIT	TEST
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNII	CONDITIONS
OFF CHARA	ACTERISTICS										
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-40		-60		-80		-100		V	I _C = 30 mA, I _B = 0
ICEO	Collector Cutoff Current		0.7		0.7		0.7		0.7	mA mA	$V_{CE} = -30 \text{ V},$ $I_{B} = 0$ $V_{CE} = -60 \text{ V},$ $I_{B} = 0$
^I CES	Collector Reverse Current		-0.4		-0.4		-0.4			mA mA	V _{CE} = -40 V, V _{BE} = 0 V _{CE} = -60 V, V _{BE} = 0 V _{CE} = -80 V, V _{BE} = 0
							5		-0.4	mA	V _{CE} = -100 V, V _{BE} = 0
I _{EBO}	Emitter Cutoff Current		1.0		1.0		1.0		1.0	mA	V _{EB} = -5.0 V,
ON CHARA	CTERISTICS		,				,				
hFE	DC Current Gain (Note 1)	30 15	75	30 15	75	30 15	75	30 15	75	1	I _C = 0.3 A, V _{CE} = -4.0 V I _C = 3.0 A, V _{CE} = -4.0 V
V _{CE} (sat)	Collector-Emitter Saturation Voltage (Note 1)		-1.5		-1.5		-1.5		-1.5	v	I _C = 6.0 A, I _B = 0.6 A
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-2.0		-2.0		-2.0		-2.0	V	I _C = 6.0 A, V _{CE} = -4.0 V
DYNAMIC C	CHARACTERISTICS										
h _{fe}	Magnitude of Common Emitter Small Signal Short Circuit Forward Current Transfer Ratio	3.0		3.0	-	3.0		3.0			I _C = 0.5 A, V _{CE} = -10 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	20		20		20		20			I _C = 0.5 A, V _{CE} = -10 V, f = 1.0 kHz

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

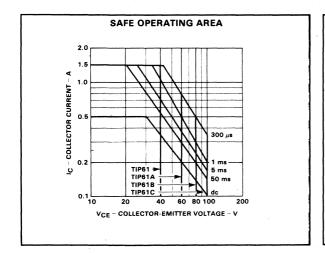
NPN SILICON

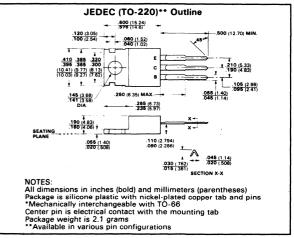
TIP61 TIP61A TIP61B TIP61C

DESIGNED FOR POWER AMPLIFIER AND HIGH SPEED SWITCHING APPLICATIONS

- 15 W DISSIPATION AT 25°C CASE
- 0.5 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- 3.0 MHz MINIMUM fT
- 0.7 μs TYPICAL t_{off}
- COMPLEMENT TO TIP62 SERIES

ABSOLUTE MA	XIMUM RATINGS (Note 1)				
Maximum Vo	Itages and Currents	TIP61	TIP61A	TIP61B	TIP61C
VCEO	Collector to Emitter Voltage	40 V	60 V	80 V	100 V
VCBO	Collector to Base Voltage	40 V	60 V	80 V	100 V
VEBO	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V	5.0 V
IC	Continuous Collector Current	0.5 A	0.5 A	0.5 A	0.5 A
IC	Peak Collector Current	1.5 A	1.5 A	1.5 A	1.5 A
I _B	Continuous Base Current	0.4 A	0.4 A	0.4 A	0.4 A
Maximum Pov	ver Dissipation				
PD	Total Dissipation @25°C Case Ter	nperature			15 W
	Derate Linearly from 25°C				0.12 W/°C

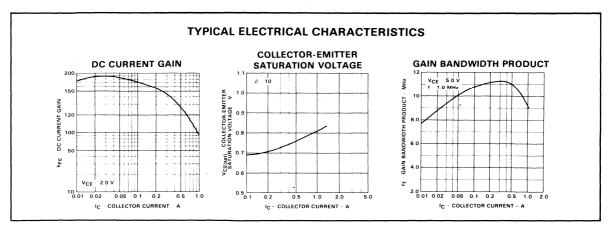

Maximum Temperatures


T_J, T_{sta} Storage and Operation Junction Temperatures

Thermal Characteristics

Thermal Resistance, Junction to Case $R_{\theta}JC$ Τp Maximum Pin Temperature (Soldering, 10 s)

	JEDE	C (TO-220)	* Outline
		3.34° C/W 260° C	
	-65°C to	+150°C	
	0.	15 W .12 W/°C	
0.4 A	0.4 A	0.4 A	
1.5 A	1.5 A	1.5 A	
0.5 A	0.5 A	0.5 A	1
5.U V	5.U V	5.U V	1



FAIRCHILD • TIP61 • TIP61A • TIP61B • TIP61C

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	TI	P61	TIP	61A	TIF	262B	TII	P62C		TEST CONDITIONS
STIVIBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
F CHARAC	TERISTICS							***************************************	•		
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	40		60		80		100		V	I _C = 30 mA, I _B = 0
ICEO	Collector Cutoff Current		0.3		0.3		0.3		0.3	mA mA	V _{CE} = 30 V, I _B = 0 V _{CE} = 60 V, I _B = 0
CES	Collector Reverse Current		0.2		0.2		0.2		0.2	mA mA mA mA	V _{CE} = 40 V, V _{BE} = 0 V _{CE} = 60 V, V _{BE} = 0 V _{CE} = 80 V, V _{BE} = 0 V _{CE} = 100 V, V _{BE} = 0
IEBO	Emitter Cutoff Current		1.0		1.0		1.0		1.0	mA	V _{EB} = 5.0 V, I _C = 0
CHARACT	ERISTICS										
hFE	DC Current Gain (Note 1)	40 15	100	40 15	100	40 15	100	40 15	100		I _C = 50 mA, V _{CE} = 4.0 V I _C = 0.5 A, V _{CE} = 4.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		0.7		0.7		0.7		0.7	V	I _C = 0.5 A, I _B = 60 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		1.3		1.3		1.3		1.3	V	I _C = 0.5 A, V _{CE} = 4.0 V
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	3.0		3.0		3.0		3.0			I _C = 50 mA, V _{CE} = 10 V, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	20		20		20		20			$I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 1.0 kHz
VITCHING C	CHARACTERISTICS										
^t on	Turn On Time	0.1	2 typ	0.1	2 typ	0.1	2 typ	0.1	2 typ	μs	$I_C = 0.5 \text{ V}, V_{BE(off)} = -4.2 \text{ V}$ $I_{B1} = 60 \text{ mA}$
toff	Turn Off Time	0.7	' typ	0.7	typ	0.7	typ	0.7	7 typ	μs	$I_C = 0.5 \text{ A}, V_{BE(off)} = -4.2 \text{ V}$ $I_{B1} = I_{B2} = 60 \text{ mA}$

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%.

PNP SILICON

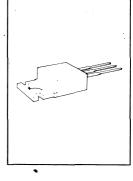
TIP62 TIP62A TIP62B TIP62C

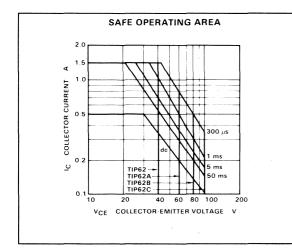
DESIGNED FOR POWER AMPLIFIER AND HIGH SPEED SWITCHING APPLICATIONS

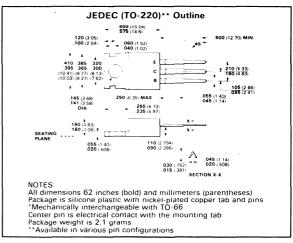
- 15 W DISSIPATION AT 25°C CASE
- 3.0 MHz MINIMUM fT
- 0.7 μs TYPICAL toff
- COMPLEMENT TO TIP61 SERIES

ABSOLUTE MAXIMUM RATINGS (Note 1)

TOOCEO LE IVID	otimojii fia fiitdo (itote 1)				
Maximum Vo	oltages and Currents	TIP62	TIP62A	TIP62B	TIP62C
VCEO	Collector to Emitter Voltage	-40 V	−60 V	-80 V	-100 V
VCBO	Collector to Base Voltage	-40 V	-60 V	−80 V	-100 V
V _{EBO}	Emitter to Base Voltage	-5.0 V	−5.0 V	−5.0 V	−5.0 V
lC .	Continuous Collector Current	0.5 A	0.5 A	0.5 A	0.5 A
1 _C	Peak Collector Current	1.5 A	1.5 A	1.5 A	1.5 A
- I _B	Continuous Base Current	0.4 A	0.4 A	0.4 A	0.4 A
Maximum Po	wer Dissipation				
P_{D}	Total Dissipation @ 25°C Case Te	mperature (N	lote 1)		15 W
_	Derate Linearly from 25°C			. 13	20 MW/°C


Maximum Temperatures

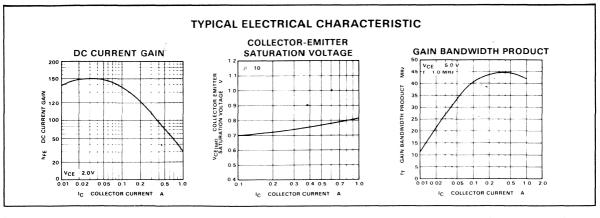

Storage and Operation Junction Temperatures T_J, T_{stq} -65° C to $+150^{\circ}$ C


Thermal Characteristics

Thermal Resistance, Junction to Case $R_{\theta}JC$ T_P Maximum Pin Temperature for Soldering

Purposes: 1/8" from Case for 10 seconds

120 MW/°C


8.34°C/W

260°C

FAIRCHILD • TIP62 • TIP62A • TIP62B • TIP62C

SYMBOL	CHADACTERICTIO	TI	P62	TIP	62A	TIF	262B	TIF	62C		TEGT CONDITIONS	
STIMBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
FF CHARAC	TERISTICS											
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-40		60		-80		:100		, V	I _C = 30 mA, I _B = 0	
CEO	Collector Cutoff Current		0.3		0.3		0.3		0.3	mA mA	V _{CE} = -30 V, I _B = 0 V _{CE} = -60 V, I _B = 0	
CES	Collector Reverse Current		0.2		0.2		0.2		0.2	mA mA mA mA	V _{CE} = -40 V, V _{BE} = 0 V _{CE} = -60 V, V _{BE} = 0 V _{CE} = -80 V, V _{BE} = 0 V _{CE} = -100 V, V _{BE} = 0	
¹ EBO	Emitter Cutoff Current		1.0		1.0		1.0		1.0	mA	V _{EB} = -5.0 V, I _C = 0	
N CHARACT	ERISTICS											
hFE	DC Current Gain (Note 1)	40 15	100	40 15	100	40 15	100	40 15	100		I _C = 50 mA, V _{CE} = -4.0 V I _C = 0.5 A, V _{CE} = -4.0 V	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		0.7		-0.7		-0.7		-0.7	V	I _C = 0.5 A, I _B = 60 mA	
V _{BE(on)}	Base-Emitter ''On'' Voltage (Note 1)		1.3		1.3		1.3		-1.3	٧	I _C = 0.5 A, V _{CE} = -4.0 V	
YNAMIC CH	ARACTERISTICS											
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	3.0		3.0		3.0		3.0			I _C = 50 mA, V _{CE} = -10 V f = 1.0 MHz	
h _{fe}	Small Signal Current Gain	20		20		20		20			I _C = 50 mA, V _{CE} = -10 V f = 1.0 kHz	
WITCHING C	HARACTERISTICS											
t _{on}	Turn On Time	0.1	2 Тур	0.13	2 Тур	0.12	2 Тур	0.1	2 Тур	μs	I _C = 0.5 A, V _{BE(off)} = -4.2 V I _{B1} = 60 mA	
toff	Turn Off Time	1.0	Тур	1.0	Тур	1.0	Тур	1.0	Тур	μs	I _C = 0.5 A, V _{BE(off)} = -4.2 V	

NOTES: (1) Pulse conditions: Length = $300 \mu s$, Duty Cycle = 2%.

 $I_{B1} = I_{B2} = 60 \text{ mA}$

NPN SILICON

TIP110 TIP111 TIP112

COLLECTOR

GENERAL PURPOSE DARLINGTON SUITABLE FOR POWER AMPLIFIER AND SWITCHING APPLICATIONS

-65°C to +150°C

2.5 °C/W

260°C

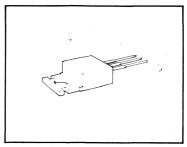
- 50 W DISSIPATION AT 25°C CASE
- 2.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- her TYPICAL OF 3000 AT 1.0 A
- COMPLEMENT TO TIP115, TIP116, TIP117

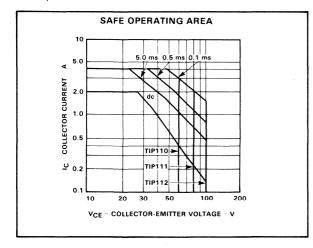
ABSOLUTE MAXIMUM RATINGS

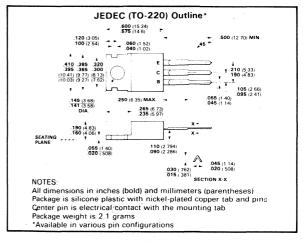
Maximum	Voltages and Currents	TIP110	TIP111	TIP112
V_{CF}	Collector to Emitter Voltage	60 V	80 V	100 V
V _{CB}	Collector to Base Voltage	60 V	80 V	100 V
V _{FB}	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
l _C	Continuous Collector Current	2.0 A	2.0 A	2.0 A
١c	Peak Collector Current	4.0 A	4.0 A	4.0 A
I _B	Continuous Base Current	0.05 A	0.05 A	0.05 A

Maximum Power Dissipation

PD * Total Dissipation @ 25°C Case Temperature 50 W
Derate Linearly from 25°C 0.4 W/°C

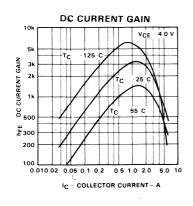

Maximum Temperatures

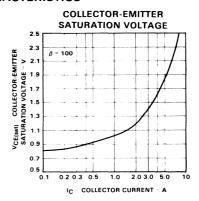

T_J,T_{Stq} Storage and Operation Junction Temperatures

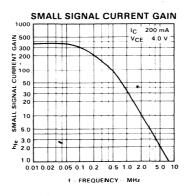

Thermal Characteristics

 $R_{ heta JC}$ Thermal Resistance, Junction to Case T_P Maximum Pin Temperature (Soldering, 5 s)

BASE 10 k 150 Ω
EMITTER




FAIRCHILD • TIP110 • TIP111 • TIP112


0)/14001	OLIA DA OTERIOTIO	TIP	110	TIP	111	TIP1	12	LINUTO	TEGT CONDITIONS
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
F CHARACT	TERISTICS								
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80		100		٧	$I_C = 30 \text{ mA}, I_B = 0$
CEO	Collector Cutoff Current		2.0		2.0		2.0	mA mA mA	$V_{CE} = 30 \text{ V, } I_{B} = 0$ $V_{CE} = 40 \text{ V, } I_{B} = 0$ $V_{CE} = 50 \text{ V, } I_{B} = 0$
^I сво	Collector Cutoff Current		1.0		1.0		1.0	mA mA mA	$V_{CB} = 60 \text{ V, } I_{E} = 0$ $V_{CB} = 80 \text{ V, } I_{E} = 0$ $V_{CB} = 100 \text{ V, } I_{E} = 0$
I _{EBO}	Emitter Cutoff Current		2.0		2.0		2.0	mA	V _{EB} = 5.0 V, I _C = 0
CHARACTI	ERISTICS								
h _{FE}	DC Current Gain (Note 1)	1k 500		1k 500		1k 500			$I_C = 1.0 \text{ A}, V_{CE} = 4.0 \text{ V}$ $I_C = 2.0 \text{ A}, V_{CE} = 4.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		2.5		2.5		2.5	V	$I_C = 2.0 \text{ A}, I_B = 8.0 \text{ mA}$
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		2.8		2.8		2.8	V	I _C = 2.0 A, V _{CE} = 4.0 V

NOTE: 1. Pulse conditions: Length = 300 μ s, Duty Cycle = 2%

TYPICAL ELECTRICAL CHARACTERISTICS

POWER DARLINGTON

PNP SILICON

TIP115

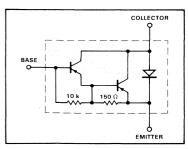
GENERAL PURPOSE DARLINGTON SUITABLE FOR POWER AMPLIFIER AND SWITCHING APPLICATIONS

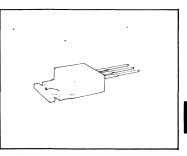
- 50 W DISSIPATION AT 25°C CASE
- 2.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- h_{FF} TYPICAL OF 3000 AT 1.0 A
- COMPLEMENTS TO TIP110, TIP111, TIP112

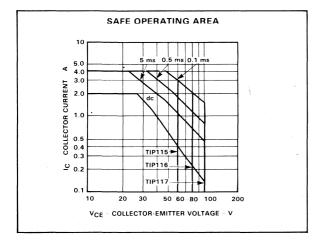
ABSOLUTE MAXIMUM RATINGS

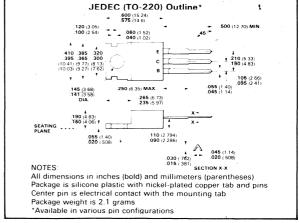
Maximum	Voltages and Currents	TIP115	TIP116	TIP117
V_{CF}	Collector to Emitter Voltage	-60 V	-80 V	-100 V
VCB	Collector to Base Voltage	-60 V	-80 V	-100 V
VEB	Emitter to Base Voltage	−5.0 V	-5.0 V	-5.0 V
lC .	Continuous Collector Current	2.0 A	2.0 A	2.0 A
lc	Peak Collector Current	4.0 A	4.0 A	4.0 A
1B	Continuous Base Current	0.05 A	0.05 A	0.05 A

Total Dissipation @ 25°C Case Temperature 50 W P_{D} 0.4 W/°C Derate Linearly from 25°C


Maximum Temperatures


-65°C to +150°C T_{J} , T_{sta} Storage and Operation Junction Temperatures


Thermal Characteristics


 $R_{\theta}JC$ Tp Maximum Pin Temperature (Soldering, 10 s)

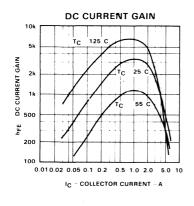
2.5 °C/W Thermal Resistance, Junction to Case 260°C

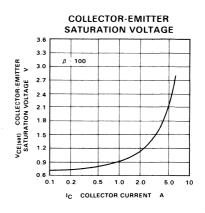
FAIRCHILD • TIP115 • TIP116 • TIP117

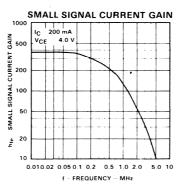
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	TIP	115	TIP1	16	TIP	117	UNITS	TEST CONDITIONS
STIVIBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS

OFF CHARACTERISTICS


V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-60		-80		-100	·	٧	I _C = 30 mA, I _B = 0
^I CEO	Collector Cutoff Current		2.0		2.0		2.0	mA mA mA	$V_{CE} = -30 \text{ V, } I_{B} = 0$ $V_{CE} = -40 \text{ V, } I_{B} = 0$ $V_{CE} = -50 \text{ V, } I_{B} = 0$
СВО	Collector Cutoff Current		1.0		1.0		1.0	mA mA mA	$V_{CB} = -60 \text{ V}, I_{E} = 0$ $V_{CB} = -80 \text{ V}, I_{E} = 0$ $V_{CB} = -100 \text{ V}, I_{E} = 0$
^I EBO	Emitter Cutoff Current		2.0		2.0		2.0	mA	$V_{EB} = -5.0 \text{ V, } I_{C} = 0$


ON CHARACTERISTICS


h _{FE}	DC Current Gain (Note 1)	1k 500		1 k 500		1 k 500			$I_C = 1.0 \text{ A}, V_{CE} = -4.0 \text{ V}$ $I_C = 2.0 \text{ A}, V_{CE} = -4.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-2.5		-2.5		-2.5	٧	I _C = 2.0 A, I _B = 8.0 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-2.8		-2.8		-2.8	٧	$I_C = 2.0 \text{ A, V}_{CE} = -4.0 \text{ V}$

NOTE: 1. Pulse conditions: Length = 300 µs, Duty Cycle = 2%.

TYPICAL ELECTRICAL CHARACTERISTICS

POWER DARLINGTON

NPN SILICON

TIP120 **TIP121 TIP122**

GENERAL PURPOSE DARLINGTON SUITABLE FOR HAMMER DRIVERS AND VOLTAGE REGULATORS

-65°C to +150°C

1.92 °C/W

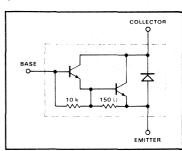
260°C

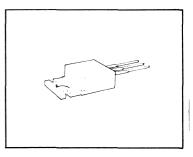
- 65 W DISSIPATION AT 25°C CASE
- **5.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT**
- hFF TYPICAL OF 4500 AT 4.0 A
- COMPLEMENTS TO TIP125, TIP126, TIP127

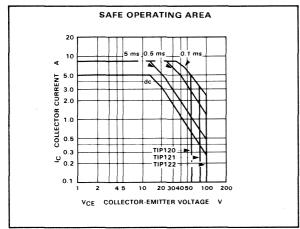
ABSOLUTE MAXIMUM RATINGS

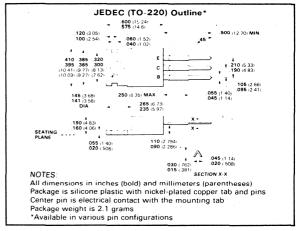
Maximum	Voltages and Currents	TIP120	TIP121	TIP122
v_{CE}	Collector to Emitter Voltage	60 V	80 V	100 V
VCB	Collector to Base Voltage	60 V	80 V	100 V
VEB	Emitter to Base Voltage	5.0 V	5.0 V	5.0 V
l _C	Continuous Collector Current	5.0 A	5.0 A	5.0 A
١c	Peak Collector Current	8.0 A	8.0 A	8.0 A
^I B	Continuous Base Current	0.1 A	0.1 A	0.1 A

Total Dissipation @ 25°C Case Temperature 65 W Derate Linearly from 25°C 0.52 W/°C


Maximum Temperatures


Storage and Operation Junction Temperatures T_{J}, T_{sta}


Thermal Characteristics


 $R_{\theta JC}$ Tp

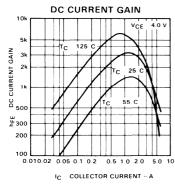
Thermal Resistance, Junction to Case Maximum Pin Temperature (Soldering, 5 s)

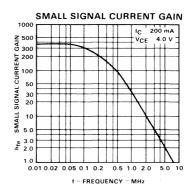
FAIRCHILD • TIP120 • TIP121 • TIP122

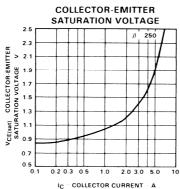
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	TIF	TIP120		TIP121		122	UNITS	TEST CONDITIONS
CTWBOL		MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS

OFF CHARACTERISTICS


V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	60		80	-	100		V	I _C = 30 mA, I _B = 0
I _{CEO}	Collector Cutoff Current		0.5		0.5		0.5	mA mA mA	$V_{CE} = 30 \text{ V, } I_{B} = 0$ $V_{CE} = 40 \text{ V, } I_{B} = 0$ $V_{CE} = 50 \text{ V, } I_{B} = 0$
ІСВО	Collector Cutoff Current	•	0.2		0.2		0.2	mA mA mA	$V_{CB} = 60 \text{ V}, I_{E} = 0$ $V_{CB} = 80 \text{ V}, I_{E} = 0$ $V_{CB} = 100 \text{ V}, I_{E} = 0$
I _{EBO}	Emitter Cutoff Current		2.0		2.0		2.0	mA	V _{EB} = 5.0 V, I _C = 0


ON CHARACTERISTICS


h _{FE}	DC Current Gain (Note 1)	1k 1k		1k 1k		1k 1k			I _C = 0.5 A, V _{CE} = 3.0 V I _C = 3.0 A, V _{CE} = 3.0 V
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		2.0 4.0		2.0 4.0		2.0 4.0	V	I _C = 3.0 A, I _B = 12 mA I _C = 5.0 A, I _B = 20 mA
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		2.5		2.5		2.5	٧	$I_C = 3.0 \text{ A}, V_{CE} = 3.0 \text{ V}$

NOTE: 1. Pulse conditions: Length 300 μ s, Duty Cycle 2%.

TYPICAL ELECTRICAL CHARACTERISTICS

POWER DARLINGTON

PNP SILICON

TIP 125 TIP 126 TIP 127

GENERAL PURPOSE DARLINGTON SUITABLE FOR HAMMER DRIVERS AND VOLTAGE REGULATORS

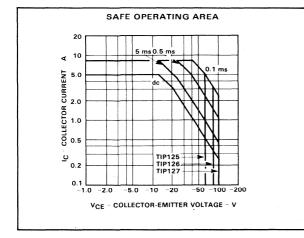
- 65 W DISSIPATION AT 25°C CASE
- 5.0 A MAXIMUM CONTINUOUS COLLECTOR CURRENT
- hFE TYPICAL OF 2000 AT 3.0 A
- COMPLEMENTS TO TIP120, TIP121, TIP122

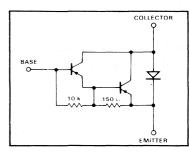
ABSOLUTE MAXIMUM RATINGS

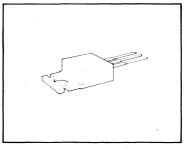
Maximum	Voltages and Currents	TIP125	TIP126	TIP127
V _{CE}	Collector to Emitter Voltage	−60 V	-80 V	-100 V
V _{CB}	Collector to Base Voltage	-60 V	-80 V	-100 V
VEB	Emitter to Base Voltage	-5.0 V	-5.0 V	-5.0 V
l _C	Continuous Collector Current	5.0 A	5.0 A	5.0 A
lĊ	Peak Collector Current	8.0 A	8.0 A	8.0 A
lΒ	Continuous Base Current	0.1 A	0.1 A	0.1 A

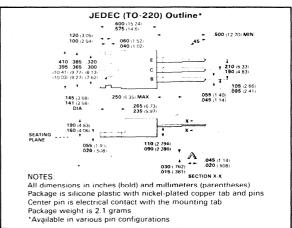
Total Dissipation @ 25°C Case Temperature P_{D}

Derate Linearly from 25°C


Maximum Temperatures


Storage and Operation Junction Temperatures T_{J}, T_{sta}


Thermal Characteristics


 R_{θ} JC Tp

Thermal Resistance, Junction to Case 1.92 °C/W Maximum Pin Temperature (Soldering, 5 s)

65 W

260°C

0.52 W/°C

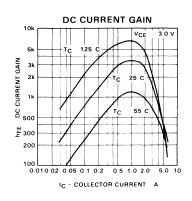
-65°C to +150°C

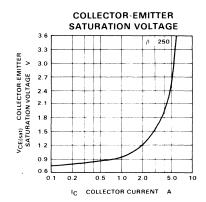
FAIRCHILD • TIP125 • TIP126 • TIP127

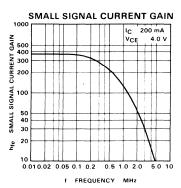
ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

SYMBOL	CHARACTERISTICS	TIP125		TIP126		TIP127		LINUTE	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS

OFF CHARACTERISTICS


V _{CEO(sus)}	Collector-Emitter Sustaining Voltage (Note 1)	-60		-80		-100	-	V	I _C = 30 mA, I _B = 0
^I ČEO	Collector Cutoff Current		0:5		0.5		0.5	mA mA mA	$V_{CE} = -30 \text{ V}, I_{B} = 0$ $V_{CE} = -40 \text{ V}, I_{B} = 0$ $V_{CE} = -50 \text{ V}, I_{B} = 0$
^I CBO	Collector Cutoff Current		0.2	,	0.2		0.2	mA mA mA	$V_{CB} = -60 \text{ V, } I_{E} = 0$ $V_{CB} = -80 \text{ V, } I_{E} = 0$ $V_{CB} = -100 \text{ V, } I_{E} = 0$
l _{EBO}	Emitter Cutoff Current		2.0		2.0		2.0	mA	V _{EB} = -5.0 V, I _C = 0


ON CHARACTERISTICS


h _{FE}	DC Current Gain.(Note 1)	1k 1k		1k 1k		1k 1k			$I_C = 0.5 \text{ A}, V_{CE} = -3.0 \text{ V}$ $I_C = 3.0 \text{ A}, V_{CE} = -3.0 \text{ V}$
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1)		-2.0 -4.0		-2.0 -4.0		~2.0 ~4.0	V	$I_C = 3.0 \text{ A}, I_B = 12 \text{ mA}$ $I_C = 5.0 \text{ A}, I_B = 20 \text{ mA}$
V _{BE(on)}	Base-Emitter "On" Voltage (Note 1)		-2.5		2.5		-2.5	V	I _C = 3.0 A, V _{CE} = -3.0 V

NOTE: 1. Pulse conditions: Length 300 µs, Duty Cycle 2%.

TYPICAL ELECTRICAL CHARACTERISTICS

POWER TRANSISTOR UNENCAPSULATED CHIPS

GENERAL INFORMATION:

The Fairchild power transistor chips described are processed in either Planar or Mesa technology. Planar Power Transistor Chips Have the Following Characteristics.

- Epitaxial collector for high voltage
- Diffused base and emitter
- Fully passivated junctions for low leakage
- 2.5 μ thick aluminum metalization on topside for high current handling and excellent wire bonding.
- 0.8 µ thick gold metalization on topside for excellent eutectic die attach.
- Chip thickness of 175μ ± 15μ

Mesa Power Transistor Chips Have the Following Characteristics.

- Epitaxial collector for high voltage
- Epitaxial base for high voltage and power capability
- Diffused emitter
- 5 μ thick aluminum metalization on topside for high current handling and excellent wire bonding.
- 0.8μ chrome-silver metalization on backside for good soft solder die attach.
- Chip thickness of 200 μ ± 15 μ

VISUAL INSPECTION

Fairchild power transistor dice go through extensive visual inspection during die processing (see flow chart). Die are visualed at 40X to 100X magnification using Fairchild's standard visual inspection criteria. Copies of the visual inspection documents are available upon request.

OPTIONS

All power transistor dice can be procured in either of the two following forms. Cavity Pack is our standard method of packaging, but, the other option is available.

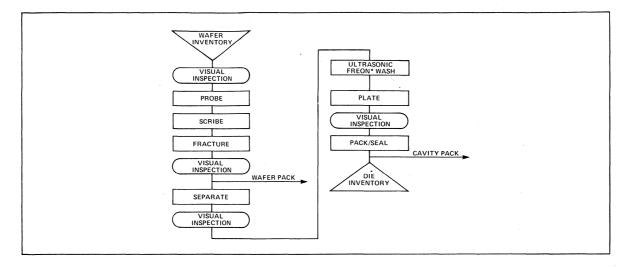
Cavity Pack - wafers are 100% tested, reject dice are inked and removed. Good dice are cleaned, visualed, and shipped in individual cavities (see *Figure 1*).

Wafer Pack - wafer is tested, reject dice are inked, wafer is scribed and fractured. Entire wafer is shipped in wafer form (see Figure 2).

STANDARD DICE SPECIFICATIONS

Power transistor dice are assigned an SP number. The dice are identical to those used in the Fairchild assembled devices. Customer requirements will be reviewed by the factory and when the specification is negotiated satisfactorily an SP number will be assigned.

PARAMETER GUARANTEES


Probing in die form limits testing to 25°C dc parameters only. The factory will correlate tests to be probed to customer requirements. These probed dc tests are guaranteed to an LTPD of 10%.

The ac parameters which will be similar to those on Fairchild data sheets, will be correlated to selected dc parameters and are guaranteed to an LTPD of 20%.

STANDARD DICE PROCESSING

The power transistor dice listed are produced on the same well-proven production lines that produce Fairchild's standard encapsulated devices.

The following flow chart will show the additional steps that are done once a wafer is selected for processing in die form.

ORDERING INFORMATION

When ordering be sure to call out the SP number, not the 2N number. Just specify the device type, quantity and the packaging method preferred.

HANDLING PRECAUTIONS

Extreme care must be used in handling unencapsulated semiconductors to avoid damage to the chip surface. The following precautions apply.

Wafer Pack - Wafers should only be handled near the edge with round ended stainless steel or teflon tweezers.

Cavity Pack - Lid and anti-static mylar should be removed slowly and with extreme care to avoid disturbing position of the dice. Dice should be handled with a smooth tipped vacuum wand only. Do not use tweezers.

In addition, devices should be stored in an environment of not more than 30% relative humidity. Die and wire bonding should not exceed 400°C in an inert atmosphere or 100°C in a non-inert atmosphere.

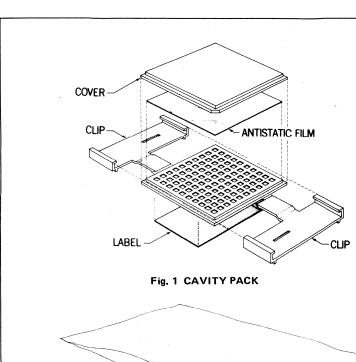


Fig. 1

CAVITY PACK — Dice are Placed in Individual Compartments. The Plastic Spap Clips Permit Inspection and Resealing.

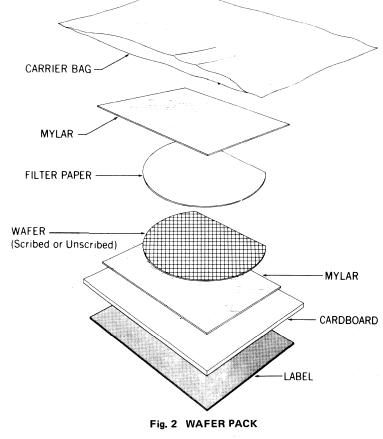


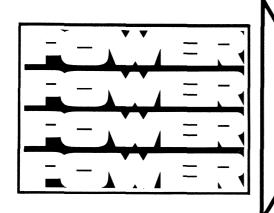
Fig. 2
WAFER PACK — Entire Wafer is
Sandwiched Between Two Pieces of
Mylar and Vacuum Sealed in a
Plastic Envelope.

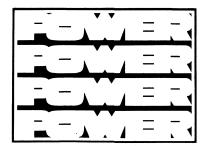
DEVICE SELECTION GUIDES AND CROSS REFERENCE

POWER TRANSISTOR TECHNOLOGY

SAFE OPERATING AREA

POWER TRANSISTOR MANUFACTURING


POWER TRANSISTOR PACKAGING AND HEAT SINKING


POWER TRANSISTOR RELIABILITY

PRODUCT INFORMATION

DEFINITIONS OF SYMBOLS AND TERMS

FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS

POWER TRANSISTOR SYMBOLS, TERMS AND DEFINITIONS

Base (B,b)* A region which lies between an emitter and collector of a transistor and into

which minority carriers are injected.

Breakdown A phenomenon occuring in a reverse-biased semiconductor junction, the initi-

ation of which is observed as a transition from a region of high small-signal resistance to a region of substantially lower small-signal resistance for an

increasing magnitude of reverse current.

Breakdown Region A region of the volt-ampere characteristic beyond the initiation of breakdown

for an increasing magnitude of reverse current.

Breakdown Voltage The voltage measured at a specified current in a breakdown region.

BV_{CBO} Collector-Base Breakdown Voltage: The breakdown voltage of the collector

base junction when reverse biased with the emitter terminal open.

BV_{CFO} Collector-Emitter Breakdown Voltage: The collector-to-emitter breakdown

voltage with the base terminal open circuited.

BV_{CER} Collector-Emitter Breakdown Voltage: The collector-to-emitter breakdown

voltage with the base connected to the emitter through a resistor.

BV_{CES} Collector-Emitter Breakdown Voltage: The breakdown voltage of the transis-

tor when the collector is reverse biased with respect to the emitter and the

base is terminated through a short circuit to the emitter.

C_{cb} Interterminal Capacitance (Collector-to-Base): The direct interterminal ca-

pacitance between the collector and base with the collector-base junction reverse biased and the emitter terminal open circuited to dc, but ac connected to the guard terminal of a 3-terminal bridge. This capacitance includes the interelement capacitance plus capacitance to the shield where the shield is

connected to one of the terminals under measurement.

Ceb Interterminal Capacitance (Emitter to Base): Capacitance measured with the

emitter base reverse biased, the collector open circuited but ac connected to

the quard circuit.

C_{ibo} Open-Circuit Input Capacitance (Common-Base): The capacitance measured

across the emitter and base terminals with the collector open circuited for ac.

Cobo Open-Circuit Output Capacitance (Common-Base): The capacitance measured

across the collector and base terminals with the emitter open circuited to ac.

Collector(C,c)* A region through which a primary flow of charge carriers leaves the base.

C_{rb} Reverse Transfer Capacitance: in common-base configuration.

Cre Reverse Transfer Capacitance: in common-emitter configuration.

Emitter(E,e)* A region from which charge carriers that are minority carriers in the base

are injected into the base.

^{*}Note: References to base, collector, and emitter symbolism (B, b, C, c, E, and e) refer to the device terminals connected to those regions.

f

Frequency.

 f_{c}

Cut-off frequency.

f_{hfe}

Small-Signal Short-Circuit Forward-Current Transfer-Ratio Cutoff Frequency (Common-Emitter): The lowest frequency at which the magnitude of the small-signal short-circuit forward-current transfer ratio is 0.707 of its value at a specified low frequency (usually 1 kHz or less).

fT

Current-Gain-Bandwidth Product: Frequency at which small-signal forward-current transfer ratio (common-emitter) extrapolates to unity. The product of the modulus (magnitude) of the common-emitter small-signal short-circuit forward current transfer ratio, h_{fe} , and the frequency of measurement when this frequency is sufficiently high so that the modulus of the h_{fe} is decreasing with a slope of approximately 6 dB per octave.

GpF

Large-Signal Insertion Power Gain (Common-Emitter): The ratio, usually expressed in dB, of the signal power delivered to the input.

hFE

DC Current Gain: The ratio of collector current (I_C) to the base current (I_B) at a specified collector-emitter voltage.

hfe

Small-Signal Short-Circuit Forward-Current Transfer Ratio (Common-Emitter): The ratio of the ac output current to the small-signal ac input current with the output short circuited to ac. This small signal-current gain is measured at a relatively low frequency, usually 1 kHz.

hfe

Small-Signal Short-Circuit Forward-Current Transfer Ratio (Common-Emitter): The ratio of the ac output current to the small-signal ac input current with the output short circuited to ac.

hIF

Static Input Resistance (Common-Emitter): The ratio of the dc base-emitter voltage to the dc base current.

hie

Small-Signal Short-Circuit Input Impedance (Common-Emitter): The ratio of the small-signal ac base-emitter voltage to the ac base current with the collector short circuited to the emitter for ac.

hie (imag)

Imaginary Part of the Small-Signal Short-Circuit Input Impedance, (Common-Emitter): The ratio of the out-of-phase (imaginary) component of the small-signal ac base-emitter voltage to the ac base current with the collector terminal short circuited to the emitter terminal for ac.

hie (real)

Real Part of the Small-Signal Short-Circuit Input Impedance, (Common-Emitter): The ratio of the in-phase (real) component of the small-signal ac base-emitter voltage to the ac base current with the collector terminal short circuited to the emitter terminal for ac.

hoe

Small-Signal Open-Circuit Output Admittance, (Common-Emitter): The ratio of the ac collector current to the small-signal ac collector-emitter voltage with the base terminal open circuited to ac.

^h oe (imag)	Imaginary Part of the Small-Signal Open-Circuit Output Admittance, (Common-Emitter): The ratio of the ac collector current to the out-of-phase (imaginary) component of the small-signal collector-emitter voltage with the base terminal open circuited to ac.
^h oe (real)	Real Part of the Small-Signal Open-Circuit Output Admittance, Common-Emitter): The ratio of the ac collector current to the in-phase (real) component of the small-signal collector-emitter voltage with the base terminal open circuited to the ac.
lΒ	Base Current (Continuous): The maximum base current which the transistor can handle without failure.
^I B (Peak)	Base Current (Peak): The peak base current which the transistor can handle without catastrophic failure. Time must be considered.
Ic	Collector Current (Continuous): The maximum dc collector current which the transistor can handle on a continuous basis without failure.
I _{C (peak)}	Collector Current (Peak): The peak collector current which the transistor can handle without catastrophic failure. Time must be considered.
ΙΕ	Emitter Current (Continuous): The maximum continuous emitter current which the transistor can carry without failure.
I _{СВО}	Collector Cutoff Current: Collector current measured with the collector-base junction reverse biased and the emitter terminal open.
ICEO	Collector Cutoff Current: Collector-emitter current measured with the base terminal open.
l _{CER}	Collector Cutoff Current: Collector current measured with the collector-base junction reverse biased and the base terminal connected to the emitter through a resistor.
ICES	Collector Cutoff Current: Collector current measured with the collector reverse biased with respect to the emitter and the base terminal shorted to the emitter.
ICEA	Collector Cutoff Current: The dc current into the collector terminal when it is biased to the reverse direction with respect to the emitter terminal and the base terminal is returned to the emitter terminal through a specified voltage.
ICEX	Collector Cutoff Current: Collector current measured with the collector reverse biased with respect to the emitter and the base terminated with a specified circuit between base and emitter.
I _{EBO}	Emitter Cutoff Current: The emitter current as measured when the emitter-base junction is reverse biased and the collector terminal is open.
Junction, Collector	A semiconductor junction normally biased in the high-resistance direction, the current through which can be controlled by the introduction of minority carriers

into the base.

Junction, Emitter A semiconductor junction normally biased in the low-resistance direction to inject minority carriers into the base. Open Circuit A circuit shall be considered as open circuited if halving the magnitude of the terminating impedance does not produce a change in the parameter being measured greater than the required accuracy of the measurement. Total Device Power Dissipation: The maximum power which the device can dis-PD sipate reliably at the specified case temperature. Case temperature must be controlled and second-breakdown limitations observed. Pout Output Power. Resistance. rb'Cc Collector-Base Time Constant: The product of the intrinsic base resistance and collector capacitance under specified small-signal conditions. Base-Emitter Resistance. RBE **Reverse Current** The current that flows through a semiconductor junction in the reverse direction. Reverse Direction The direction of current flow which results when the n-type semiconductor region is at a positive potential relative to the p-type region. $R\theta_{JA}$ Thermal Resistance, Junction-To-Ambient: The thermal resistance (resistance to heat flow) from the junction of the transistor to the ambient. Thermal Resistance, Case-To-Heat-Sink: The thermal resistance from the case $R\theta$ CS of the transistor to its mounting surface. Safe Operating Area A defined region of operation which will ensure reliable operation of the transistor. Limits upon current as a function of voltage and time as shown. Saturation A base-current and a collector-current condition resulting in a forward-biased collector junction. Second Breakdown A condition of the transistor, resulting from a lateral current instability, in which the electrical characteristics are determined principally by the spreading resistance of a thermally maintained current constriction. The initiation of second breakdown is observed as a decrease in the voltage sustained by the collector. Semiconductor A device whose essential characteristics are due to the flow of charge carriers Device within a semiconductor. Semiconductor A region of transition between semiconductor regions of different electrical prop-Junction. erties (e.g., n-n+, p-n, p-p+ semiconductors), or between a metal and a semiconductor.

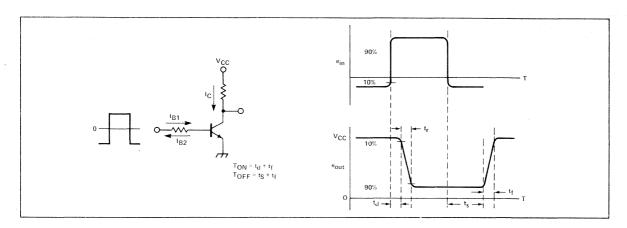
quired accuracy of the measurement.

A circuit in which doubling the magnitude of the terminating impedance does not produce a change in the parameter being measured that is greater than the re-

Short Circuit

Small Signal

A signal which when doubled in magnitude does not produce a change in the parameter being measured that is greater than the required accuracy of the measurement.


Static Value

A non-varying value or quantity of measurement at a specified fixed point, or the slope of the line from the origin to the operating point on the appropriate characteristic curve.

Switching Times

 $t_{\rm S}$

Common-emitter switching parameters consist of t_d , t_r , t_s and t_f . In the following circuit, drive-circuit conditions and collector-circuit conditions must be specified. The transition times of the input must be negligible compared to the measured times.

t_d

Delay Time: The time interval during turn-on from the point when the input pulse at the base reaches 10% of its full amplitude to the point when the collector pulse changes from 0 to 10% of its maximum amplitude.

t_r Rise Time: The time interval during turn-on in which the collector pulse changes from 10% to 90% of its maximum amplitude.

Storage Time: The time interval during turn-off from the point when the turn-off pulse at the base changes from 100% to 90% of its full amplitude to the time when the collector current has changed from 100% to 90% of its maximum amplitude.

t_f Fall Time: The time interval during turn-off in which the collector pulse decreases from 90% to 10% of its maximum amplitude.

toff Turn-Off Time: The sum of t_s + t_f

 t_{on} Turn-On Time: The sum of $t_d + t_r$

tp Pulse Time: The time duration from the point on the leading edge which is 50% of the maximum amplitude to a point on the trailing egde which is 50% of the maximum amplitude.

t_w Pulse Average Time: The time duration from the point on the leading edge which is 50% of the maximum amplitude to a point on the trailing edge which is 50% of the maximum amplitude.

 T_{A} Ambient Temperature or Free Air Temperature: The air temperature measured below a device, in an environment of substantially uniform temperature cooled

only by natural air convection and not materially affected by reflective and

radiant surfaces.

Case Temperature: The temperature of the transistor package or case, mea- T_{C}

sured at a specific point.

See Switching Times. td

Terminal An externally available point of connection to one or more electrodes.

See Switching Times.

Thermal Resistance

tf

toff

The temperature difference between two specified points or regions divided by (Steady State) the power dissipation under conditions of thermal equilibrium.

Junction Temperature: The junction temperature of the transistor. TJ

See Switching Times.

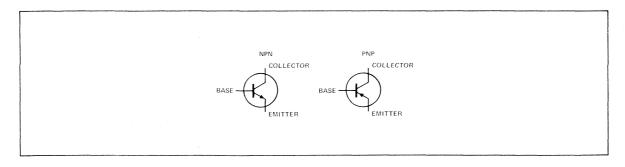
See Switching Times. t_{on}

See Switching Times. ^tp

See Switching Times. t_r

The change of temperature difference between two specified points or regions Transient Thermal at the end of a time interval divided by the step-function change in power dis-**Impediance** sipation at the beginning of the same time interval causing the change of temperature difference.

An active semiconductor device capable of providing power amplification and Transistor


having three or more terminals.

Transistor, Junction, A transistor having a base and two or more junctions. Below are the graphic symbols for emitter, base, collector transistors. In the graphic symbols, the en-Multijunction Type

velope is optional if no element is connected to the envelope.

Storage Temperature: The minimum and maximum storage temperature under T_{sta}

which the device can be safely stored without causing damage.

See Switching Times. t_{W} V_{BB} Supply Voltage, dc (Base): The dc supply voltage applied to a circuit connected to the base. V_{BE} Base-Emitter Voltage: The base-emitter voltage as measured with the collector current and collector-emitter voltage specified. V_{BE} (sat) Base-Emitter Saturation Voltage: The base-emitter voltage as measured with conditions as specified for V_{CE(sat)}. V_{CB} Collector-Base Voltage: The maximum voltage which may be applied across the collector-base terminals with base termination specified. V_{CBO} Collector-Base Voltage: The maximum voltage which may be applied to the collector-base terminals with the emitter terminal open. Supply Voltage DC, (Collector): The dc supply voltage applied to a circuit connec-V_{CC} ted to the collector. VCEO Collector-Emitter Voltage: The maximum voltage which may be applied to the collector-emitter terminals with the base terminal open. V_{CEO(sus)} Collector-Emitter Sustaining Voltage: Collector-to-emitter breakdown voltage with the base terminal open. The voltage specified is at the lowest portion of any negative resistance region on the voltage-breakdown characteristic curve. **VCER** Collector-Emitter Voltage: The maximum voltage which may be applied between the collector and the emitter with the base terminal connected through a resistor to the emitter. V_{CER(sus)} Collector-Emitter Sustaining Voltage: The collector-emitter voltage obtained by reverse-biasing the collector with respect to the emitter and the base terminated through a resistor to the emitter. Test current must be the proper magnitude so that the voltage measured is at the lowest point of any negative resistance region on the characteristic breakdown curve. VCES Collector-Emitter Voltage: The maximum voltage which may be applied between the collector and emitter with the base terminal shorted to the emitter terminal. Collector-Emitter Saturation Voltage: The dc voltage measured between the V_{CE(sat)} collector-emitter terminals at specified current conditions.

emitter-base terminals with the collector terminal open.

Emitter-to Collector dc Voltage.

Efficiency.

 V_{EBO}

 V_{EC}

η

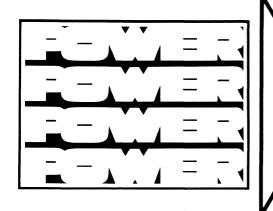
Emitter-Base Voltage: The maximum voltage which may be applied to the

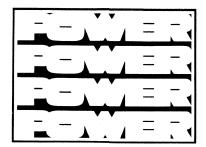
DEVICE SELECTION GUIDES AND CROSS REFERENCE

POWER TRANSISTOR TECHNOLOGY

SAFE OPERATING AREA

POWER TRANSISTOR MANUFACTURING


POWER TRANSISTOR PACKAGING AND HEAT SINKING


POWER TRANSISTOR RELIABILITY

PRODUCT INFORMATION

DEFINITIONS OF SYMBOLS AND TERMS

FAIRCHILD FIELD SALES OFFICES. SALES REPRESENTATIVES. DISTRIBUTOR LOCATIONS

FAIRCHILD SALES OFFICES UNITED STATES AND CANADA

*HUNTSVILLE, ALABAMA 3322 So. Memorial Parkway 35801 Suite 92 Tel: 205-883-7020 TWX 810-726-2214

PHOENIX, ARIZONA 4414 N. 19th Avenue 85015 Suite G Tel: 602-264-4948 TWX: 910-951-1544

*LOS ANGELES, CALIFORNIA 6922 Hollywood Blvd. 90028 Suite 818

Tel: 213-466-8393 TWX 910-321-3009
*SAN DIEGO, CALIFORNIA
8333 Clairemont Mesa Blvd, 92111

Suite 109 Tel: 714-279-6021

*SANTA ANA, CALIFORNIA 2101 East Fourth St. 92705

2101 East Fourth St. 92705 Bldg B. Suite 185 Tel 714-558-1881 TWX 910-595-1109 *SANTA CLARA, CALIFORNIA

3080 Olcott Street 95050 Suite 210A Tel 408 244-1400 TWX 910-338-0241.

DENVER, COLORADO 7475 W 5th Ave , Suite 100 Lakewood, Colo. 80226 Tel 303-234-9292

*STAMFORD, CONNECTICUT 2nd Floor 2777 Summers Street 06905 Tel 203-348-7701 TWX 710-474-1763

*ORLANDO, FLORIDA Crane's Roost Office Park 303 Whooping Loop Altamonte Springs, Fla 32701 Tel 305-834-7000 TWX 810-850-0152

TAMPA, FLORIDA 12945 Seminole Blvd Florida Twin Towers Bldg 2, Room 6 Largo, Fla 33540 Tel 813-585-3892

*MELVILLE, NEW YORK 275 Broadhollow Road 11746 Tel: 516-293-2900 TWX: 510-224-6480 *CHICAGO, ILLINOIS 9950 W. Lawrence Avenue Room 311 Schiller Park, III. 60176 Tel: 312-671-4660 TWX: 910-227-0051

FORT WAYNE, INDIANA 2118 Inwood Drive 46805 Suite 111 Tel: 219-483-6453 TWX: 810-332-1507

*INDIANAPOLIS, INDIANA 7202 N. Shadeland 46250 Tel: 317-849-5412 TWX: 810-260-1793

BLADENSBURG, MARYLAND 5801 Annapolis Road 20710 Suite 500 Tei: 301-779-0954 TWX: 710-826-9654

*BOSTON, MASSACHUSETTS 888 Worcester Street Weliesley Hills, Mass. 02181 Tel: 617-237-3400 TWX: 710-348-0424

DETROIT, MICHIGAN
Westland Office Plaza
33300 Warren Avenue Suite 101
Westland, Mich. 48185
Tel: 313.425.3250 TWX: 810-242-2973

*MINNEAPOLIS, MINNESOTA 7600 Parklawn Avenue Room 251 Edina, Minn. 55435 Tel: 612-835-3322 TWX.910-576-2944

WAYNE, NEW JERSEY 580 Valley Road 07490 Suite 1 Tel: 201-696-7070

ALBUQUERQUE, NEW MEXICO 2403 San Mateo N E 87110 Plaza #2 Tel: 505:265:5601 TWX: 910-989-1186

BINGHAMTON, NEW YORK 3215 E. Main St. Suite 7 Endwell, NY 13760 Tel: 607-754-1094

*ATLANTA, GEORGIA 1504 Idlehour Way Tucker, Georgia 30084 Tel: 404-939-2595 POUGHKEEPSIE, NEW YORK 15 College View Ave. 12603 Tel: 914-452-4200 TWX: 510-248-0030

*ROCHESTER, NEW YORK 260 Perinton Hills Office Park Fairport, New York 14450 Tel: 716-223-7700

CLEVELAND, OHIO 6151 Wilson Mills Rd. Suite 101 Highland Heights, Ohio 44143 Tel: 216-461-8288 TWX: 810-427-9271

DAYTON, OHIO 4812 Frederick Road 45414 Suite 101 Tel: 513:278-8278 TWX: 810-459-1803

TULSA, OKLAHOMA 5321 S. Sheridan Road 74145 Suite 15 Tel: 918-663-7131

*PHILADEPHIA, PENNSYLVANIA Fort Washington Industrial Park 500 Office Center Fort Washington, Pa. 19034 Tel. 215-886-6623 TWX: 510-665-1654

*SENECA, SOUTH CAROLINA 27 Normandy Shores Annex #2. RFD #1 Seneca, South Carolina 29678 Tel: 803-882-1760

*DALLAS, TEXAS 13771 N. Central Expressway 75231 Suite 809 Tel: 214-234-3391 TWX: 910-867-4757

*HOUSTON, TEXAS 6430 Hillcroft 77036 Suite 102 Tel: 713-771-3547 TWX: 910-881-6278

MILWAUKEE, WISCONSIN 4642 76th Street Suite 101 Greenfield, Wisconsin 53220 Tel: 414-282-5260

CANADA Toronto Regional Office FSC 1590 Matheson Blvd. Unit 26 Mississauga, Ontario L4W 1J1. Canada Tel: 416-625-7070 TWX: 610-492-4311

Fairchild Semiconductor 1385 Mazurette Suite 3 Montreal, Quebec, H4N-1G8, Canada Tel: 514-382-2552 TWX: 610-421-3178

ield Applications Engineer available

FAIRCHILD SALES REPRESENTATIVES UNITED STATES AND CANADA

ALABAMA CARTWRIGHT & BEAN, INC 901 Magnolia Drive, N.W. Huntsville, Alabama 35805 Tel: 205-533-3509

CALIFORNIA
CELTEC COMPANY
7380 Clairemont Mesa Blvd., Suite 109
San-Diego, California 92111
Tel: 714-279-7961 TWX: 910-335-1512

CELTEC COMPANY 2041 Business Center Drive, Suite 211 Irvine, California 92664 Tel: 714-752-6111 TWX: 910-595-2512

CELTEC COMPANY 6767 Forest Lawn Drive Los Angeles, California 90068 Tel. 213-874-6002 TWX. 910-321-2884

MAGNA SALES, INC 3080 Ofcott Street, Suite 210A Santa Clara, California 95050 Tel: 408-985-1750 TWX, 910-338-0241

COLORADO SIMPSON ASSOCIATES, INC 2552 Ridge Road Littleton, Colorado 80120 Tel: 303-794-8381 TWX: 910-935-0719

CONNECTICUT LORAC SALES, INC 2777 Summer Street Stamford, Connecticut 06905 Tel 203-327-6238 TWX 710-474-1763

FLORIDA WMM ASSOCIATES, INC. 101 Wymore Road, Suite 300 Altamonte Springs, Florida 32701 Tel: 305-862-4700 TWX: 810-853-0263

WMM ASSOCIATES, INC. 1822 Drew Street Clearwater, Florida 33519 Tel. 813-447-2533 TWX 810-866-4108

WMM ASSOCIATES, INC. 1628 E. Atlantic Blvd Pompano Beach, Florida 33060 Tel: 305-943-3091 TWX: 510-956-9891

GEORGIA CARTWRIGHT & BEAN, INC. PO Box 52846 90 W. Wieuca Square, Suite 155 Atlanta, Georgia 30342 Tel 404-255-5262 TWX: 810-751-3220

INDIANA LESLIE M DEVOE COMPANY 7172 North Keystone Ave., Suite C Indianapolis, Indiana 46240 Tel. 317-257-1227 TWX: 810-341-3284

KANSAS B C ELECTRONIC SALES. INC. 1015 West Santa Fe Olathe. Kansas 66061 Tel: 913-782-6696 TWX: 910-749-6414 MARYLAND L.D. LOWERY 5801 Annapolis Road, Suite 500 Bladensburg, Maryland 20710 Tel: 301-277-6565 TWX: 710-826-9654

MASSACHUSETTS
SPECTRUM ASSOCIATES, INC.
888 Worcester Street
Wellesley, Massachusetts 02181
Tel: 617-237-2796 TWX: 710-348-0424

MICHIGAN RATHSBURG ASSOCIATES 16621 E. Warren Ave. Detroit, Michigan 48224 Tel: 313-882-1717 Telex: 23-5229

MINNESOTA
PSI COMPANY
7710 Computer Avenue
Minneapolis, Minnesota 55435
Tel. 612-835-1777 TWX: 910-576-2740

MISSISSIPPI CARTWRIGHT & BEAN, INC P O. Box 3730 5250 Galaxy Drive, Suite J Jackson, Mississippi 39207 Tel: 601-981-1368

MISSOURI B.C. ELECTRONIC SALES, INC 320 Brookes Drive, Suite 204 Hazelwood, Missouri 63042 Tel: 314-731-1255 TWX: 910-762-0600

NEW JERSEY LORAC SALES, INC 580 Valley Road Wayne, New Jersey 07470 Tel: 201-696-8875 TWX: 710-988-5846

NEW YORK ADVANCED COMPONENTS, INC South Bay Road P.O. Box 276 North Syracuse, New York 13212 Tel: 315-699-2671 TWX: 710-541-0439

LORAC SALES, INC 275 Broadhollow Road Melville, L.I., New York 11746 Tel: 516-293-2970 TWX: 510-224-6480

SPECTRUM SALES, INC 65 Circuit Avenue Tuckahoe, New York 10707 Tel 914-793-1660 (Microwave Product Only)

NORTH CAROLINA CARTWRIGHT & BEAN, INC. 625 Harwyn Drive Charlotte, North Carolina 28215 Tel: 704-333-6457

CARTWRIGHT & BEAN, INC P O Box 11209 2415-G Crabtree Blvd Raleigh, North Carolina 27604 Tel: 919-834-1186 OHIO COMPONENTS, INC 16600 Sprague Rd., Suite 235 Interstate Plaza Cleveland, Ohio 44130 Tel 216-243-9200 TWX 810-423-9435

COMPONENTS, INC. 9 Pierce Street West Carrollton, Ohio 45449 Tel: 513-866-0661

PENNSYLVANIA BGR ASSOCIATES 500 Office Center Fort Washington Industrial Park Fort Washington, Pennsylvania 19034 Tel: 215-643-4111 TWX 510-665-1654

L.D. LOWERY 2801 West Chester Pike Broomall, Pennsylvania 19008 Tel: 215-356-5300 or 215-528-5170 TWX: 510-662-9072

TENNESSEE CARTWRIGHT & BEAN, INC P O. Box 4760 560 S. Cooper Street Memphis, Tennessee 38104 Tel: 901-276-4442

CARTWRIGHT & BEAN, INC 8501 Kingston Pike Knoxville, Tennessee 37919 Tel: 615-693-7450

TEXAS
TECHNICAL MARKETING
4445 Alpha Road
Dallas, Texas 75240
Tel: 214-387-3601 TWX: 910-860-5158

TECHNICAL MARKETING 6430 Hillcroft, Suite 104 Houston, Texas 77036 Tel: 713-777-9228

WASHINGTON
OUADRA CORPORATION
1621 - 114th Avenue S.E
Suite 212
Bellevue. Washington 98004
Tel: 206-454-4946 TWX 910-443-2318

WISCONSIN LARSEN ASSOCIATES 10855 West Potter Road Wauwatosa, Wisconsin 53226 Tel: 414-258-0529

CANADA AVOTRONICS LIMITED 200 Consumers Road, Suite 200 Willowdale, Ontario, M2J 1P8, Canada Tel. 416-493-9711

AVOTRONICS LIMITED 6600 Trans Canada Highway, Suite 750 Pointe Claire. Quebec, H9R 4S2, Canada Tel. 514-697-2135 TWX 610-422-3908 Telex. 05-821-762

INTERNATIONAL FIELD SALES OFFICES

AUSTRALIA Fairchild Australia Pty Ltd. A.D.C. Pacific Building 77 Pacific Highway North Sydney, N.S.W. 2060 Australia Tel: 929-6711 Telex: AA20053 FAIRSYD

(mailing address) P.O. Box 450 North Sydney, N.S.W. 2060 Australia

AUSTRIA Fairchild Electronics A-1010 Wien Schwedenplatz 2 Tel: 0222 635821 Telex: 75096

BRAZIL
Fairchild Electronica Ltd
Caixa Postal 30407
Rua de Consola Cao, 3542
Sao Paulo S P., Brazil
Tel: 81-6168 Telex: 021-261
Cable: FAIRLEC

FRANCE Fairchild Semiconducteurs S.A. 121, Avenue d'Italie 75013-Paris Tel: 580 5566 Telex: 20614

GERMANY Fairchild Halbleiter GmbH Verkaufsleitung Deutschland 8 Muench n 80 Truderinger Str. 13 Tel. (0.89) 4 70191 Telex: 52 4831 fair d Fairchild Halbleiter GmbH European Headquarters 62 Wiesbeden 12 Hagenauer Str. 38 Postfach 9549 Tel: 06121 2051 Telex: 04186588

Fairchild Halbleiter GmbH 3000 Hannover Koenigsworther Strasse 23 Tel: 0511 17844 Telex: 09 22922

Fairchild Halbleiter GmbH 7251 Leonberg Poststr. 37 Tele: 07152 41026 Telex: 07 245711

Fairchild Halbleiter GmbH 85 Nuemberg Waldlustsrasse 1 Tel: 0911 407005 Telex: 06 23665

HONG KONG Fairchild Semiconductor (HK) Ltd. 135 Hoi Bun Road Kwun Tong Kowloon, Hong Kong Tel: K-890271 Telex: HKG-531

ITALY Fairchild Semiconduttori, S.p.A. Via Citta' Di Castello, 13 00191 Roma, Italy Tel: 00396 3274006

Fairchild Semiconduttori S.p.A. Via Rosellini, 12 20124 Milano, Italy Tel: 00392 6887451 Telex: 36522

JAPAN TOK.-Fairchild Sanyo Kokusaku Pulp Bldg. 2nd Fl. 7-8 Shibuya 1-Chome Shibuya-ku Tokyo 150. Japan Tel: 03.400-8351 Telex: 2424173 MEXICO Fairchild Mexicana S.A. Blvd. Adolfo Lopez Mateos No. 163 Mexico 19. D.F. Tel: 905-563-5411 Telex: 017-71-038

SCOTLAND
Fairchild Semiconductor Ltd.
Shiel House
Craigshill Livingston
West Lothian, Scotland
Tel: 00445 8932891
Telex: 0051 72629

SWEDEN
Fairchild Semiconductor AB
Svartensgatan 6,
11820 Stockholm
Sweden
Tel: 00468-449255 Telex: 0054-17759

TAIWAN
Fairchild Semiconductor (Taiwan) Ltd
Hsietsu Building, Room 502
47 Chung Shan North Road
Sec. 3, Taipei, Taiwan
Tel: 573205 thru 573207

THE NETHERLANDS
Fairchild Semiconductor
Paradijslaan 39
Eindhoven, Holland
Tel: 0031-4067727 Telex: 0044-51024

UNITED KINGDOM Fairchild Semiconductor Ltd. Kingmaker House Station Road New Barret Herts EN5 1NX England Tel: 00441 4407311 Telex: 0051 262835

FAIRCHILD SEMICONDUCTOR FIELD SALES OFFICE AND DISTRIBUTOR LOCATIONS

EUROPEAN HEADQUARTERS Fairchild Halbleiter GmbH

6200 Wiesbaden 12 Postfach 9549 Hagenauer Strasse 38 Tel: (0 61 21) 20 51 Telex: 04 186 588 04 186 771

GERMANY

SALES OFFICES Fairchild Halbleiter GmbH Verkaufsleitung Deutschland 8000 Muenchen 80 Truderinger Str. 13 Tel: (089) 4 70 10 91 Telex: 05 24831

Fairchild Halbleiter GmbH 3000 Hannover Koenigsworther Str. 23 Tel: (0511) 1 78 44 Telex: 09 22922

Fairchild Halbleiter GmbH 6202 Wiesbaden-Biebrich Hagenauer Str. 38 Tel: (06121) 20 51 Telex: 04 186588

Fairchild Halbleiter GmbH 7250 Leonberg Poststrasse 37 Tel: (07152) 4 10 26 Telex: 07 245711

Fairchild Halbleiter GmbH 8500 Nuernberg Waldluststrasse 1 Tel: (0911) 40 70 05 Telex: 06 23665

DISTRIBUTORS

Dohrenberg 1000 Berlin 30 Bayreuther Str. 3 Tel: (030) 2 13 80 43 - 45 Telex: 01 84860

Unitronic GmbH & Co. KG 2360 Bad Segeberg Lindhofstr. 3 Tel: (0455) 20 64 / 20 65 Telex: 02 61646

Unitronic GmbH & Co. KG 3160 Lehrte Markscheider Weg 41 Tel: (05132) 5 30 01 - 3 Telex: 09 22084

Unitronic GmbH, Ing. R. Breiden 4000 Duesseldorf 30 An der Thomaskirche 50A Tel: (0211) 62 44 39 / 63 42 14 Telex: 08 586434

Berger Elektronik GmbH 6000 Frankfurt Am Tiergarten 14 Tel: (0611) 49 03 11 Telex: 04 12649

Elcowa GmbH 6200 Wiesbaden-Schierstein Zeilstrasse 32 Tel: (06121) 2 30 01 / 2 Telex: 04 186 202

Technoprojekt 7000 Stuttgart 50 Heinrich-Ebner-Str. 13 Tel: (0711) 56 17 12 Telex: 07 254490

Electronic 2000 7257 Ditzingen Hirschlanderstr. 2 Tel: (07156) 70 83 Telex: 07 245267

Electronic 2000 8000 Muenchen 80 Neumarkter Str. 75 Tel: (089) 43 40 61 Telex: 05 22561

Unitronic GmbH 8019 Ebersberg Hochfelln 4 Tel: (08092) 2 13 33

Electronic 2000 8501 Eckental Rodelhang 7 Tel: (09126) 84 01

ITALY

SALES OFFICES

Fairchild Semiconduttori S.p.A. Via Rosselini 12 20124 Milano Tel: (02) 6 88 74 51 Telex: 36522

Fairchild Semiconduttori S.p.A. Via Città di Castello 13 00191 Roma Tel: (06) 3 27 40 06 / 3 28 75 48 Telex: 61373 (boccara)

DISTRIBUTORS

Adelsy's.a.s.

Viale Lombardia 17/2

40141 Bologna
Tel: (051) 48 11 49 / 47 06 22

A.E.P. Via Terracina 311 80125 Napoli Tel: (081) 630 006

Gagliardi Elettronica snc Via Vacchieri 8 10097 Regina Margherita (To) Tel: (011) 78 01 081/2/3

Marini Nicola Via Silvati 4/5 80141 Napoli Tel: (081) 29 38 81 / 29 97 03

Microlem s.a.s. Via Monteverdi 5 20131 Milano Tel: (02) 22 03 17 / 22 03 26

Pantronic s.r.l, Via Flaminia Nuova 219 00191 Roma Tel: (06) 32 48 66 / 32 88 048

Silverstar Ltd. Via dei Gracchi 20 20146 Milano Tel: (02) 49 96

FRANCE

SALES OFFICE

Fairchild Semiconducteur S.A. 121, Avenue d'Italie 75013 Paris Tel: (1) 5 80 55 66 Telex 260937-200614

DISTRIBUTORS

Almex S.A. Zone industrielle d'Antony 48, Rue de l'Aubepine 92160 Antony Tel: (1) 666 21 12 Telex: 280823

E. Feutrier Sarl Rue des Trois Glorieuses 42270 Saint Priest en Jarez Tel: 77 33 33 89 TWX: 30 00 21

Etablissements F. Feutrier Rue des Trois Glorieuses 42270 Saint Priest en Jarez Tel. (1577) 33 33 89 Telex: 300021

Rea Distribution 9, Rue Ernest Cognacq 92300 Levallois Tel. (1) 758 11 11 Telex: 620630

Scientech 11, Avenue Ferdinand Buisson 75016 Paris Tel: (1) 609 91 36 Telex: 260042

GROS ELECTRONIQUE 13, Rue Victor Hugo 59350 St. André Lez Lille Tel: (1620) 556470

Gros Electronique 14 Avenue du General Leclerc 54000 Nancy Tel: 28 24 24 22 TWX: 85 00 87

UNITED KINGDOM

SALES OFFICES Fairchild Semiconductor Ltd. Kingmaker House Station Road New Barnet, Herts. EN5 1NX Tel: (01) 4 40 73 11 Telex: 262835

Fairchild Semiconductor Ltd, Shiel House, Craigshill Livingston, W. Lothian Scotland. Tel: Livingston (0589) 3 28 91 Telex: 72629

DISTRIBUTORS
Barlec Ltd.
219 London Road
East Grinstead, Sussex
Tel: (0342) 2 43 83

Comway Electronics Itd.
John Scott House
Market Street
Bracknell, Berks, RG12 1JU
Tel: Bracknell (0344) 2 47 65/2 45 71
Telex: 847201

Gothic Electronics Ltd. Beacon House Hampton Street Birmingham 1989 3IP Tel: (021) 236 5060 / 236 8541 Telex: 338731

I.T.T. Electronics Services Edinburgh Way Harlow, Essex Tel. Harlow (0279) 26 777 Telex: 81146

Macro Marketing Ltd. 396 Bath Road Slough, Bucks. Tel: Slough (0753) 3 54 44 Burnham (06286) 6 30 11 Telex: 847083

Salford Electrical Instruments Ltd. Pael Works, Barton Lane Eccles Manchester M30 8 HL Tel: (061) 7 89 50 81 Telex 667711

S.C. European Components Ltd. Unit 9, M 40 Industrial Centre Coronation Road High Wycombe, Bucks. Tel: (0494) 3 61 46 Telex: 837163

Superdis Ltd. 41 Loverock Road Reading RG3 IED, Berks. Tel: (0734) 59 49 33 Telex: 847147

Neltronics Ltd. John F. Kennedy-Road, Naas Road Dublin 12, Ireland Tel: (Dublin) 50 18 45 Telex: 4837

Most Electronics Ltd 24 Broughton Street Cheetham Hill Manchester M88 NN Tel: 061 8317672 TWX: 66 83 04

BENELUX

SALES OFFICE Fairchild Semiconductor Paradijslaan 39 Eindhoven, Holland Tel: (040) 44 69 09 Telex: 51024

DISTRIBUTORS
Sotronic S.A.
Rue Père de Deken 14
B-1010 Bruxelles
Tel: (02) 7 36 10 07
Telex: 25141

Inelco Nederland BV Joan Muyskenweg 22 NL-1006 Amsterdam Tel: (020) 93 48 24 Telex: 14622

SCANDINAVIA

SALES OFFICE Fairchild Semiconductor AB Svartengsgatan 6 S-11620 Stockholm Tel: (08) 44 92 55 Telex: 17759

DISTRIBUTORS
E. Friis-Mikkelsen A/S
51 Krogshoivej
DK.2880 Bagsvaerd
Tel: (02) 98 63 63
Telex: 22350
Findip A8
Teollisuustie 7
P.O. Box 344
SF-02700 Kauntainen
Tel: (90) 50 22 55
Telex: 123129
Datamatik AS
Ostersjoveien 62
Oslo 6, Norway
Tel: (02) 26 63 30
Telex: 16067
Nordqvist & Berg
P.O. Box 9145
S10272 Stockholm
Tel: (08) 69 04 00
Telex: 10407

AUSTRIA AND EASTERN EUROPE

SALES OFFICE Fairchild Electronics Schwedenplatz 2 A-1010 Wien Tel: (0222) 63 58 21 Telex: 75096

DISTRIBUTORS
Burisch GmbH & Co. KG
Scheydgasse 31
A-1210 Wien
Tel: (0222) 38 76 38
Telex: 13310
R.I.Z.
Bozidariceva 13
YU-41000 Zagreb
Telex: 21288

Telex: 21288

OTHER DISTRIBUTORS.

W. Moor AG
Bahnstr. 58

CH-8105 Regensdorf
Tel: (01) 8 40 66 44
Telex: 52042
General Electronics Ltd.
209 Thevon Street
Nikaia 77. Piraeus
Greece
Tel: 4 91 35 95
Telex: 212763 (kami gr)
STG International Ltd.
25 Nachiat Benyamin Street
P.O. Box 1275
Tel Aviv. Israel
Tel: 53 45 95 / 53 11 5
Telex: 32229
Suin S.A.
C/. Clot. 194
Barcelona (13), Spain
Tel: (03) 340 78 54/58/62
Teknim Ltd.
Tersani Cad. Kut Han No. 38/605
Karahöy, Istanbul
Turkey
Telex: 32540
Telex: 325540
Telexim Ltd.
Turkey
Telex: 25540
Telexim Ltd.
Telex: 25540
Telexim Ltd.
Telex: 25540
Telexim Ltd.
Telex: 25540
Telexim Ltd.
Telex: 25540
Telexim Ltd.
Telex: 25540
Telexim Ltd.
Telex: 25540
Telexim Ltd.
Telex: 25540
Telexim Ltd.
Telex: 25540
Telexim Ltd.
Telex: 25540
Telexim Ltd.
Telex: 25540
Telexim Ltd.
Telex: 25540
Telex: 25540
Telexim Ltd.
Telex: 25540

Teknim Itd.
Riza Sah Pehlevi Cad. 7
Kavaklidere. Ankara
Turkey
Tel: 27 58 00
Telex: 42155
Fairmont Electronics (Pty.) Ltd.
Northwards Jan Smuts Avenue, Craighall Park
Johannesburg 2001. S. Africa
Tel: (48) 64 21 / 64 81-2 / 76 13
Telex: 83257

FAIRCHILD